FACULDADES ALVES FARIA MESTRADO EM DESENVOLVIMENTO REGIONAL

Raimundo Nonato Casé de Brito

EFICIÊNCIA TÉCNICA E PRODUTIVIDADE DA AGROPECUÁRIA TOCANTINENSE UTILIZANDO A ANÁLISE ENVOLTÓRIA DE DADOS (DEA)

> GOIÂNIA AGOSTO DE 2013

FACULDADES ALVES FARIA MESTRADO EM DESENVOLVIMENTO REGIONAL

Raimundo Nonato Casé de Brito

EFICIÊNCIA TÉCNICA E PRODUTIVIDADE DA AGROPECUÁRIA TOCANTINENSE UTILIZANDO A ANÁLISE ENVOLTÓRIA DE DADOS (DEA)

Dissertação apresentada à comissão do Programa de Mestrado Profissional em Desenvolvimento Regional, das Faculdades Alves Faria, como requisito para obtenção do título de Mestre em Desenvolvimento Regional.

Orientador: Prof. Dr. Alcido Elenor Wander

Linha de pesquisa: Análise e Políticas de Desenvolvimento Regional

GOIÂNIA AGOSTO DE 2013

FACULDADES ALVES FARIA MESTRADO EM DESENVOLVIMENTO REGIONAL

Raimundo Nonato Casé de Brito

EFICIÊNCIA TÉCNICA E PRODUTIVIDADE DA AGROPECUÁRIA NOS MUNICÍPIOS DO TOCANTINS UTILIZANDO A ANÁLISE ENVOLTÓRIA DE DADOS (DEA)

BANCA EXAMINADORA:

Prof. Dr. Alcido Elenor Wander

Faculdades Alves Faria & Embrapa Arroz e Feijão – Orientador

Prof. Dr. Fernando Negret Fernandez

Faculdades Alves Faria - Membro

Prof. Dr. Cleyzer Adrian da Cunha
Universidade Federal de Goiás - Membro

GOIÂNIA AGOSTO DE 2013

À minha mãe, Maria Tereza, e à Doralice, minha esposa. Que ousaram sonhar, juntas, este ideal que ora se concretiza. Meu eterno amor!

AGRADECIMENTOS

Os agradecimentos, neste momento, representam profusão de sentimentos: os alegres, por ter a convicção da generosidade e a capacidade de as pessoas colaborarem para a realização dos objetivos e os sonhos dos seus semelhantes; os tristes, por ter vivenciado experiências importantes, com pessoas interessantes, mas que o tempo e a distância por vezes nos afastam e, por fim, o sentimento do alívio, por concluir o mestrado, diante das dificuldades e incertezas.

Agradecimento especial ao prof. Dr. Alcido Elenor Wander, orientador desta dissertação, que compartilhou seus conhecimentos e, generosamente, compreendeu as minhas limitações e potencialidades.

Aos professores(as) do Mestrado das Faculdades Alves Farias, que demonstraram profundo conhecimento teórico e prático, tornando possível a elaboração deste trabalho e, principalmente, por terem tornado simples o complexo: Fernando Negret Fernandez, Heliane Prudente Nunes, Ricardo Antônio Gonçalves Teixeira, Antônio Teodoro Ribeiro Guimarães (*in memorian*), Renata Cristina de S. Nascimento, Bento Alves da Costa Filho, César Ricardo Maia de Vasconcelos, Jean-Marie Lambert, Paulo César Bontempo, Ricardo Daher Oliveira e Maria Cristina Pereira Matos.

Aos acadêmicos do Mestrado, em especial os amigos Carlos, Oduvaldo, Lucy e André, pela rica convivência, troca de experiências e saberes que engradeceram nossos debates, pesquisas e trabalhos.

Aos colegas da Secretaria do Planejamento e da Modernização da Gestão Pública do Tocantins e aos técnicos do IBGE do Rio de Janeiro e Tocantins pelas importantes informações e explicações.

Aos motoristas e pilotos que conduziram suas máquinas por terra e ar com segurança e responsabilidade por milhares de quilômetros entre Palmas/Goiânia e Goiânia/Palmas, e a equipe do hotel Astro, em Goiânia, com sua hospitalidade e respeito.

E a Deus, por sua misericórdia, por ter nos dotado de espírito imaginativo, investigativo, inquieto e, principalmente, do livre arbítrio.

"(...) Só o que eu quis, todo o tempo, o que eu pelejei para achar, era uma só coisa – a inteira – cujo significado e vislumbrado dela eu vejo que sempre tive. A que era: que existe uma receita, a norma dum caminho certo, estreito, de cada uma pessoa viver – e essa pauta cada um tem – mas a gente mesmo, no comum, não sabe encontrar; como é que, sozinho, por si, alguém ia poder encontrar e saber? Mas, esse norteado, tem. Tem que ter. Se não, a vida de todos ficava sendo sempre o confuso dessa doideira que é...."

João Guimarães Rosa - Grande Sertão Veredas, p. 693

EFICIÊNCIA TÉCNICA E PRODUTIVIDADE DA AGROPECUÁRIA TOCANTINENSE UTILIZANDO A ANÁLISE ENVOLTÓRIA DE DADOS (DEA)

BRITO, Raimundo Nonato Casé de. Eficiência Técnica e Produtividade da Agropecuária Tocantinense utilizando a Análise Envoltória de Dados (DEA). Mestrado em Desenvolvimento Regional, Faculdades Alves Faria, Goiânia, 2013. Orientador: Alcido Elenor Wander.

RESUMO

As discussões sobre os impactos da agricultura no processo de crescimento econômico não são novas na Ciência Econômica e desempenham papel relevante no debate teórico do assunto. O setor no Estado do Tocantins representa um dos pilares da sua economia e, seu crescimento deverá ser respaldado nos ganhos de eficiência e produtividade. Daí a importância de se compreender suas potencialidades e limitações. O objetivo principal deste estudo é identificar os fatores determinantes da eficiência técnica e produtividade da agropecuária dos municípios tocantinenses. Dessa forma, utilizou-se o método de Análise Envoltória de Dados ou *Data Envelopment Analysis* (DEA) para mensurar a eficiência técnica e o Índice de Malmquist visando determinar a produtividade no setor. Na seleção de variáveis e do modelo DEA, utilizamos o método multicritério combinatório por cenários e na operacionalização das variáveis utilizamos os aplicativos DEA-SAED v1 e o Sistema Integrado de Apoio à Decisão – SIAD v3. Os resultados da aplicação do modelo DEA-BCC orientado ao produto identificaram em 1995/96, 34 municípios eficientes. Após a análise das Unidades Tomadoras de Decisão ou Decision Making Unit (DMU), como unidades de referência, concluiu-se que 18 DMU's podem ser consideradas eficientes, ou seja, 14,63% dos municípios. No ano de 2006, utilizando o mesmo procedimento, 15 DMU's foram eficientes, isto é, 10,79% dos municípios tocantinenses. O Índice de Malmquist melhorou em 85,37% dos municípios, potencializado pelos ganhos de eficiência tecnológica, enquanto a eficiência técnica declinou em 95,93% das DMU's. A orientação técnica, as propriedades da agricultura familiar e o valor dos investimentos, conforme a resolução de problema de programação linear são as variáveis determinantes para a eficiência técnica. Sendo assim, a hipótese principal se confirmou como decisória para se alcançar eficiência técnica. As hipóteses secundárias como a presença de propriedades da agricultura familiar e pessoal ocupado, também se afirmaram como motivadoras importantes da eficiência técnica. No entanto, não se assegurou que a hipótese secundária, número de tratores, seja definidor desta eficiência. À luz do método desenvolvido e das hipóteses levantadas, o estudo finaliza um conjunto de propostas para eliminar ou mitigar a ineficiência técnica e recomendações de práticas aplicáveis na agropecuária dos municípios tocantinenses para elevar sua eficiência técnica e seus ganhos de produtividade.

Palavras-chave: Agropecuária; Análise Envoltória de Dados (DEA); Eficiência técnica; Índice de Malmquist e Tocantins.

TECHNICAL EFFICIENCY AND PRODUCTIVITY OF AGRICULTURE IN THE MUNICIPALITIES OF TOCANTINS STATE USING DATA ENVELOPMENT ANALYSIS (DEA)

BRITO, Raimundo Nonato Casé de. **Technical Efficiency and Productivity of Tocantins Agriculture using Data Envelopment Analysis (DEA).** Master's degree in Regional Development. Adviser: Alcido Elenor Wander, Faculdades Alves Faria, Goiânia, 2013.

ABSTRACT

The discussions on the impacts of agriculture in the process of economic growth, are not new in Economic Science, and play an important role in the debate economic theorist. The sector in the State of Tocantins is one of the pillars of its economy and the growth in the sector should be supported by gains in efficiency and productivity. Hence the importance of understanding its potential and limitations. The main objective of this study is to identify the determinants the technical efficiency and productivity in the agricultural municipalities of Tocantins. Thus, for the development we used the method of Data Envelopment Analysis (DEA) to measure the technical efficiency and Malmquist Index to determine productivity in the sector. In selecting variables and DEA model, we used the combinatorial multicriteria by scenarios and in the operationalization of the variables we used the applications DEA-SAED v1.0 and Integrated Decision Support - SIAD v3.0. The results of applying the DEA-BCC oriented product identified in 1995/96, 34 counties efficient, after analyzing the Decision Making Unit (DMU) as reference units, it was concluded that 18 DMU's can be considered efficient, in other words 14.63% of the municipalities. In 2006, using the same procedure, 15 DMU's were efficient, that is, 10.79% of the municipalities of Tocantins. The Malmquist Index improved 85.37% of the municipalities, boosted by gains in technological efficiency, while technical efficiency has declined by 95.93% of DMU's. The technical guidance, the properties of the family farm and the value of investments as solving linear programming problem are the variables determining the technical efficiency, so the main hypothesis was confirmed as decisions to achieve technical efficiency. The secondary hypotheses as the presence of family farming properties and employed persons, also stated as important motivating technical efficiency, however, be ensured that the secondary hypothesis, the number of tractors, is defining this efficiency. The study concludes the light of the developed method and hypotheses a set of proposals to eliminate or mitigate the technical inefficiency and recommendations of what could be practiced in agriculture of municipalities of Tocantins to raise their technical efficiency and productivity gains.

Keywords: Agriculture; Data Envelopment Analysis (DEA); Technical efficiency; Malmquist Index and Tocantins.

LISTA DE ILUSTRAÇÕES

Figura 1: Localização do Estado do Tocantins	19
Figura 2: Amazônica Legal	19
Figura 3: Áreas de antropização do Estado em 1990	22
Figura 4: Áreas de antropização do Estado em 2007	22
Figura 5: Rede de Influência Regional	26
Figura 6: conjunto de produção	58
Figura 7: Mapa de isoquantas	59
Figura 8: Retorno crescente de escala	60
Figura 9: Retorno constante de escala	61
Figura 10: Retorno decrescente de escala	61
Figura 11: Fronteira de Possibilidade de Produção (FPP)	62
Figura 12: Alocação eficiente de Pareto	64
Figura 13: Curva de um processo de produção	68
Figura 14: Alcance da fronteira de eficiência	69
Figura 15: Eficiência técnica e alocativa orientada a insumo	71
Figura 16: Eficiência técnica e alocativa orientada ao produto	73
Figura 17: Eficiência de escala na produtividade	76
Figura 18: Eficiência de escala	76
Figura 19: Técnicas de mensuração da eficiência	79
Figura 20: Vantagens e desvantagens dos principais modelos de análise de	70
eficiência	79
Figura 21: Comparação DEA (abordagem não-paramétrica) e Regressão	9.0
Linear (abordagem paramétrica)	80
Figura 22: Aplicação da DEA	83
Figura 23: Evolução e estado da arte (DEA)	86
Figura 24: Modelos DEA e orientação	87
Figura 25: Fronteiras BCC e CCR	89
Figura 26: Medida de eficiência e folgas nos inputs	98
Figura 27: Fluxo de análise em DEA	99
Figura 28: Supereficiência	100
Figura 29: Fronteira FDH orientada a insumo	103

105
105
107
111
110
118
118
110
139
139
147
14/

LISTA DE ILUSTRAÇÕES

Gráfico 1: Participação do PIB das Regiões (%) 1995-2010	35
Gráfico 2: Valor das exportações, importações e saldo comercial, Tocantins,	37
1995 – 2012 (US\$ 1.000 FOB)	31
Gráfico 3: Tocantins, formas de utilização da terra (1995-2006)	43
Gráfico 4: Tocantins, estrutura fundiária, por classe de área (2006)	44

LISTA DE TABELAS

Tabela 1: Uso e ocupação do solo – Tocantins	20
Tabela 2: Evolução da área antrópica (ha), percentual da área antrópica em relação à	
área total e percentual da agropecuária em relação à área antrópica total, para as	
microrregiões e para o Estado do Tocantins, 1990, 2000, 2005 e 2007	21
Tabela 3 : População total Tocantins: 1991/2010	23
Tabela 4: População dos 10 maiores municípios - 1991 a 2010	23
Tabela 5: População Urbana, Rural e Taxa de Crescimento - 1991 a 2010	23
Tabela 6: Distribuição percentual da população nos Censos Demográficos, Brasil e	
Tocantins - 1991/2010	24
Tabela 7: Distribuição percentual da população nos Censos Demográficos,	
Microrregional - 1991/2010	25
Tabela 8: Produto Interno Bruto (PIB) a preços correntes, segundo Regiões Geográficas	
e Unidades da Federação — Brasil - 1995-2010	27
Tabela 9: Série encadeada do volume do Produto Interno Bruto (PIB), segundo Regiões	
Geográficas e Unidades da Federação – Brasil - 2002-2010	28
Tabela 10: Participação no Produto Interno Bruto (PIB) Nacional, segundo Regiões	
Geográficas e Unidades da Federação - 2002-2010	30
Tabela 11: Produto Interno Bruto (PIB) PER CAPITA, segundo o País, Regiões	
Geográficas e Unidades da Federação - 2002-2010	32
Tabela 12: Produto Interno Bruto (PIB) a preços correntes municipais (2006-2010)	34
Tabela 13: Composição do Valor Adicionado Bruto, Tocantins - 2006-2010	36
Tabela 14: Balança Comercial, Tocantins - 1995-2012 (US\$ 1.000 FOB)	36
Tabela 15: Número de estabelecimentos e Área dos estabelecimentos agropecuários por	
grupos de área total — 1995/96 - 2006	44
Tabela 16: Agropecuária, segundo variáveis pesquisadas, Censos Agropecuários	
1995/96 - 2011	45
Tabela 17: Efetivo dos rebanhos (cabeças) – 1995/96 – 2011	46
Tabela 18: Produção de origem animal – 1995/96 – 2011	47
Tabela 19: Área colhida da lavoura temporária – 1995/96 - 2011	48
Tabela 20: Quantidade produzida da lavoura temporária – 1995/96 – 2011	48
Tabela 21: Produtividade, lavoura temporária (t/ha – frutos/ha) – 1995/96 - 2011	49

Tabela 22: Participação da soja, carnes e derivados nas exportações do Tocantins,	
2002-2012	50
Tabela 23: Pessoal ocupado no estabelecimento, agricultura familiar e não familiar,	
2006	53
Tabela 24: Seleção do primeiro par de variáveis – método multicritério combinatório	
por cenários	120
Tabela 25: Seleção da terceira variável – método multicritério combinatório por	
cenários	123
Tabela 26: Seleção da quarta variável – método multicritério combinatório por cenários	124
Tabela 27: Seleção da quinta variável – método multicritério combinatório por cenários	125
Tabela 28: Seleção da sexta variável – método multicritério combinatório por cenários	125
Tabela 29: Seleção da sétima variável – método multicritério combinatório por cenários	126
Tabela 30: Seleção da oitava variável – método multicritério combinatório por cenários	127
Tabela 31: Seleção da nona variável – método multicritério combinatório por cenários	127
Tabela 32: Seleção da décima variável – método multicritério combinatório por	
cenários	128
Tabela 33: Seleção da décima primeira variável – método multicritério combinatório	
por cenários	129
Tabela 34: Seleção da décima segunda primeira variável – método multicritério	
combinatório por cenários	129
Tabela 35: Eficiência Técnica, DEA-BCC orientação output -1995/96	135
Tabela 36: Eficiência Técnica, DEA-BCC orientação <i>output</i> – 2006	142
Tabela 37: Eficiência Técnica, Tecnológica e Índice de Malmquist 1995/96 / 2006	150

LISTA DE ABREVIATURAS E SIGLAS

AGF Aquisições do Governo Federal

ANEEL Agência Nacional de Energia Elétrica

BCC Banker, Charnes e Cooper

CAI Complexo Agroindustrial Brasileiro

CCR Charnes, Cooper e Rhodes **CNC** Conselho Nacional do Café CRS Constant Returns to Scale

DEA Data Envelopment Analysis

DEAFrontier Data Envelopment Analysis Frontier Program **DEAP** Data Envelopment Analysis (computer) Program

DMU Decision Making Unit

DNC Departamento Nacional do Café Empréstimos do Governo Federal **EGF**

EMS Efficiency Measurement System

FDH Free Disposal Hull

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

EMBRATER Empresa Brasileira de Extensão Rural **FPP** Fronteira de Possibilidade de Produção

IBGE Instituto Brasileiro de Geografia e Estatística **IPEA**

Instituto de Pesquisa Econômica Aplicada

MAPA Ministério da Agricultura, Pecuária e Abastecimento

MATOPIBA Maranhão, Tocantins, Piauí e Bahia

MDA Ministério do Desenvolvimento Agrário

OEA Organização dos Estados Americanos

ONG Organização Não Governamental

PEP Prêmio para o Escoamento de Produto

PGPM Política de Garantia dos Preços Mínimos

PIB Produto Interno Bruto

PIM-DEA Data Envelopment Analysis Frontier Software

PLProgramação Linear **PNUD** Programa das Nações Unidas para o Desenvolvimento

POLOCENTRO Programas Especiais de Desenvolvimento dos Cerrados

PPL Problema de Programação Linear

PRODECER Programa de Cooperação Nipo-brasileira para o Desenvolvimento dos Cerrados

PRODIAT Projeto de Desenvolvimento Integrado da Bacia do Araguaia-Tocantins

PROFIR Programa de Financiamento para Equipamentos de Irrigação

PRONAF Programa Nacional de Fortalecimento da Agricultura Familiar

PROTERRA Programa de Redistribuição de Terras

PROVÁRZEAS Programa Nacional de Aproveitamento Racional de Várzeas

SBM Slack Based Measure

SEPLAN-TO Secretaria do Planejamento e da Modernização do Estado do Tocantins

SFA Stochastic Frontier Analysis

SIAD Sistema Integrado de Apoio à Decisão

SIDRA Sistema IBGE de Recuperação Automática

SNCR Sistema Nacional de Crédito Rural

SUFRAMA Superintendência da Zona Franca de Manaus

UHE Usina Hidrelétrica

VAB Valor Adicionado Bruto

VRS Variable Returns to Scale

SUMÁRIO

INTRODUÇÃO	1
CAPITULO I	7
1. AGROPECUÁRIA E O CRESCIMENTO E DES	ENVOLVIMENTO
ECONÔMICO	
1.1 Crescimento e desenvolvimento econômico	7
1.2 Agricultura e o crescimento e desenvolvimento e	conômico11
1.3 A agricultura no Brasil	14
1.4 Caracterização da área de estudo	18
1.4.1 Características naturais	18
1.4.2 Características demográficas econômicas	22
1.4.2.1 Características demográficas	22
1.4.2.2 Características econômicas	26
1.4.2.3 A agropecuária no Estado do Tocantins	38
1.4.2.4 A agricultura familiar no Tocantins	51
1.5 Uso da Análise Envoltória de Dados (DEA) na ag	gricultura54
CAPÍTULO II	56
2. REFERENCIAL TEÓRICO	56
2.1 Teoria da Produção	56
2.2 As bases para análise da eficiência e produtivida	de 63
2.3 Conceitos de eficiência e produtividade	66
2.3.1 Medidas de eficiência	70
2.3.1.1 Medidas de eficiência orientada a insumo	70
2.3.1.2 Medidas de eficiência orientada a produto	73
2.3.1.3 Eficiência de escala	75
2.4 Mensuração da eficiência	78
2.5 Método analítico: Análise Envoltória de Dados (l	DEA)80
2.5.1 Características gerais	80
2.5.2 Modelos e modelagens da DEA	88
2.5.2.1 Modelo DEA-CCR Primal	89
2.5.2.2 Modelo DEA-BCC Primal	92

	2.5.2.3 Modelo DEA-CCR e BCC Dual	94
	2.5.3 Modelos DEA avançados	101
	2.5.3.1 Modelo aditivo	101
	2.5.3.2 Modelo de supereficiência	102
	2.5.3.3 Modelo Free Disposal Hull (FDH)	104
	2.5.3.4 Modelo DEA restrições aos pesos	106
	2.5.3.5 Modelo DEA fronteira invertida	107
	2.5.4 Índice de Malmquist	109
CA	APÍTULO III	112
3.	METODOLOGIA	112
	3.1 Metodologia de pesquisa	112
	3.2 Base de dados	113
	3.3 Seleção das DMU's	114
	3.4 Seleção das variáveis	116
	3.4.1 Aplicação do método multicritério combinatório por cenários para a seleção de variáveis	
	3.5 Identificação e aplicação dos modelos	130
	3.6 Recursos computacionais	131
CA	APÍTULO IV	134
4.	ANÁLISE DOS RESULTADOS	134
4	4.1 Análise da Eficiência Técnica	134
	4.1.1 Análise da eficiência técnica 1995/96	135
	4.1.2 Análise da eficiência técnica 2006	142
4	4.2 A Análise do Índice do Malmquist	149
4	4.3 Análise das Hipóteses	154
4	4.4 Problemas e demandas do setor agropecuário do Tocantins	155
CA	APÍTULO V	158
5.	CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES	158
RI	EFERÊNCIAS BIBLIOGRÁFICAS	161
Αŀ	PÊNDICE A - Resultados utilizando o modelo SBN e FDH, orientação output – 1995/9) 6
	PÊNDICE B – Folgas, Alvos e Benchmark's – 1995/96	
	PÊNDICE C - Resultados utilizando o modelo SBN e FDH, orientação output – 2006	201
ΔŦ	PÊNDICE D – Folgas Alvos e Benchmark's – 2006	205

ANEXO A - Participação das atividades econômicas no Valor Adicionado Bruto a preço básicos, por Unidade da Federação, 2010	
ANEXO B - Número de estabelecimentos agropecuários por grupos de área total – (1995)	
ANEXO C - Área dos estabelecimentos agropecuários por grupos de área total - (1995-96/2006)	238
ANEXO D - Estabelecimentos e área da agricultura familiar, segundo as Grandes Regiõe Unidades da Federação - 2006	
ANEXO E - Características dos estabelecimentos da agropecuária nos municípios do Est do Tocantins - 2006	
ANEXO F - Características dos estabelecimentos da agropecuária nos municípios do Est do Tocantins – 1995/1996	

INTRODUÇÃO

A relevância da atividade agropecuária para o processo de crescimento econômico de uma nação, desde a fisiocracia, aos economistas clássicos e contemporâneos, representa uma temática importante na teoria econômica, considerando-se principalmente as funções que essa atividade pode exercer na produção de externalidades positivas nos demais setores da vida econômica.

O setor agropecuário exerceu protagonismo econômico no País desde o período da colonização, Império e República Velha fundamentado na exportação de *commodities* e baixa diversificação produtiva. Entretanto, a partir da crise de 1930 um novo modelo emerge baseado no dinamismo do mercado interno e discordante do modelo agroexportador anterior, sem, no entanto, a agropecuária perder sua relevância, e viver uma evolução até a chamada industrialização da agricultura. Conforme Coelho (2001), a expansão da fronteira agrícola no período de 1965 a 1985 caracteriza-se pelo surgimento do *agrobusiness*, potencializado principalmente pelo uso de subsídios e pela Política de Garantia de Preços Mínimos (PGPM). A fase seguinte, até 1995, marca o início da abertura comercial e as primeiras discussões das questões ambientais no setor. Por fim, a partir de 1995, o setor distingue-se por apresentar menor intervenção governamental, exposição crescente do setor à concorrência internacional, presença essencial das discussões ambientais, crescente interdependência do setor à indústria e profundas transformações tecnológicas.

Do início do processo de expansão da fronteira agrícola aos dias atuais, a agropecuária passou por transformações significativas, da forma de utilização dos recursos naturais ao uso da mão de obra e seus insumos, como expõe Diniz

Este período marca a mudança na base técnica da agricultura brasileira, com a consolidação do Complexo Agroindustrial Brasileiro – CAI. A partir desse momento, a agricultura brasileira se tornará cada vez menos dependente de seu laboratório natural (a terra) e da força de trabalho, e cada vez mais dependente da indústria produtora de insumos e da indústria processadora de produtos naturais (DINIZ, 2006, p. 86).

A agropecuária desempenha papel importante no processo de crescimento nacional e tocantinense. Segundo o Ministério da Agricultura, Pecuária e Abastecimento (MAPA), o crescimento da produção agrícola será respaldado no crescimento da produtividade, os

produtos mais dinâmicos do agronegócio (algodão, soja, carne de frango e bovina, café, açúcar, milho e celulose) deverão aumentar sua produtividade em 21% no período 2011/2012 a 2021/2022, a produção de carnes, em aproximadamente 11 milhões de toneladas. O crescimento do mercado interno continuará tendo papel relevante para a expansão da atividade e ao mesmo tempo pressão para a expansão das exportações (MAPA, 2012, p. 6).

A economia do Estado do Tocantins, nas últimas duas décadas, desde a sua criação com a promulgação da Constituição de 1988, em 05 de outubro, artigo 13º do Ato das Disposições Constitucionais Transitórias, passou por importantes e profundas transformações, que acarretaram impactos diretos e indiretos aos diversos setores da vida econômica e social do Estado. No entanto, para o desenvolvimento dessa empresa, nosso enfoque privilegiará o econômico-produtivo, considerando, sobretudo, o setor agropecuário, um dos fundamentos da sua economia.

A atividade agropecuária é um dos pilares da economia tocantinense. Em 1995 a participação do Produto Interno Bruto (PIB) estadual em relação à economia nacional era de 0,27%; em 2006, de 0,41% e em 2010, 0,46%. O PIB agropecuário tocantinense em 1995 representava 1,43% do PIB agropecuário brasileiro; em 2006, 1,44% e em 2010, 1,70%. Em 1995, a agropecuária representava para o PIB nacional 5,8%; em 2006, 5,5% e em 2010, 5,3%. Na economia tocantinense, este percentual de participação é substancialmente maior. Em 1995 o PIB Agropecuário representava 29,7% do PIB total do Estado, em 2006 representou 18,5% e em 2010, 18,1% (IBGE, Contas Regionais, 2010).

O Estado possui grandes projetos hidroagrícolas. Alguns se iniciaram no bojo dos grandes projetos governamentais dos anos 70 e 80, do século XX, como o projeto Rio Formoso. Em 1996 implementa-se o Programa de Cooperação Nipo-brasileira para o Desenvolvimento dos Cerrados, fase III (PRODECER III) na região de Pedro Afonso. Atualmente os projetos Sampaio, Manuel Alves, São João e Gurita estão na sua fase inicial de operação e consolidação da infraestrutura. As exportações de soja e carne e seus derivados representaram em 2012, 94,67% das exportações totais (US\$ 644,145 mil), a produção de soja com 1,19 milhões de toneladas em 2011, ocupa a 11º posição no ranking nacional, bem como do rebanho bovino com pouco mais de 8 milhões de cabeças.

O Tocantins está inserido na região designada como MATOPIBA (Maranhão, Tocantins, Piauí e Bahia), a qual deverá apresentar elevado aumento de produção e abertura de novas terras. As projeções (2011/2012 a 2021/2022) para a região indicam uma produção de 20 milhões de toneladas, crescimento de 27,6% da produção atual, e acréscimo de outros 7 a 10 milhões de hectares (MAPA, 2012, p. 51).

Desde os anos 70, verificou-se no setor agropecuário intenso processo de modernização, inicialmente impulsionado por volumosos investimentos públicos que vieram escasseando até os dias atuais. Mas ao mesmo tempo vivenciou-se uma integração maior com o mercado externo, gerando significativo volume de divisas e alicerçando-se como base da economia nacional e tocantinense, possuidora de características modernizadoras combinadas com estruturas arcaicas.

Segundo Feijó "a dicotomia entre patronais e familiares carrega consigo a praticidade de mostrar os grandes contrastes existentes na agropecuária nacional" (FEIJÓ, 2012, p. 163) tornando a atividade produtiva significativamente heterogênea, pois, existem poucos, mas grandes produtores agropecuários, com a produção voltada ao grande mercado consumidor nacional e internacional, e do outro lado numeroso grupo de pequenos produtores voltados à subsistência e ao mercado local, portanto, implicando a necessidade de adotarem-se políticas públicas específicas aos produtores. Cabe destacar que não existe "estudo conclusivo, que estabeleça relação entre o tamanho do estabelecimento agropecuário e sua eficiência técnica ou econômica" (FEIJÓ, 2012, p. 161).

No contexto dessas transformações e da importância do setor para a economia estadual, torna-se evidente o mérito de se analisar o comportamento e os determinantes da eficiência e da produtividade do setor agropecuário no Estado do Tocantins, o que implica segundo Gomes, Mello e Biondi Neto em

Avaliar a eficiência com a qual uma unidade produtiva opera tem importância tanto para fins estratégicos (comparação entre unidades produtivas), quanto para o planejamento (avaliação dos resultados do uso de diferentes combinações de fatores) e para a tomada de decisão (como melhorar o desempenho atual, por meio da análise da distância entre a produção atual e potencial) (GOMES, MELLO e BIONDI NETO, 2003, p.7).

Os processos produtivos terão maiores e melhores possibilidades de retornos econômicos, com o maior controle e conhecimento de seus procedimentos. Assim, a análise da eficiência técnica e da produtividade das unidades agropecuárias tem uma dimensão cada vez mais relevante na elucidação da competitividade das unidades produtoras. Como medidas de desempenho, a eficiência e produtividade nos permite explorar e relacionar hipóteses sobre as fontes de suas distinções, para Fried, Lovell e Schmidt

Why the interest in measuring efficiency and productivity? I can think of two reasons. First of all, they are success indicators, performance measures, by which production units are evaluated. Second, only by measuring efficiency and productivity, and separating their effects from the effects of the production environment, can we explore hypotheses concerning the sources of efficiency or productivity differentials (FRIED, LOVELL, SCHMIDT, 1992, p. 5).

Nesse sentido diversos estudos foram levados a cabo para analisar a eficiência, utilizando modelos paramétricos e não-paramétricos. No nosso caso, utilizaremos um modelo não-paramétrico denominado Análise Envoltória de Dados ou *Data Envelopment Analysis* (DEA), cujo objetivo é avaliar o desempenho de organizações e atividades, essencialmente por meio de medidas de eficiência técnica (FERREIRA e GOMES, 2009, p. 23). Para GOMES, MELLO e BIONDI NETO o modelo de Análise Envoltória de Dados

O uso de DEA para medir eficiência relativa de unidades produtivas tem se mostrado bastante atrativo em diversos setores de aplicação. O emprego de modelos DEA em agricultura pode apoiar as decisões dos agricultores, ao indicar as fontes de ineficiência e as unidades que podem servir de referência às práticas adotadas (benchmarks) (GOMES, MELLO e BIONDI NETO, 2003, p.7).

A Análise Envoltória de Dados pode utilizar diferentes Unidades Tomadoras de Decisão – *Decision Making Units* (DMU) para avaliar a eficiência, no caso do setor agropecuário, as DMU's mais utilizadas nos estudos realizados no país, conforme Gomes (2008, p. 37) foram as fazendas/produtores, municípios, estados, centros de pesquisa, cooperativas, assentamentos, microrregiões, colonos, empresas agrícolas e vilas rurais.

Por fim, o trabalho justifica-se pela possibilidade de subsidiar políticas públicas (considerando suas especificidades) que possibilitem melhorar o desempenho do setor, carente de estudos técnicos, que avaliem o desempenho relativo de uma organização a uma unidade de excelência, *benchmark*, dentro das próprias experiências das DMU's do Estado do Tocantins. No âmbito dos municípios, poderá contribuir na tomada de decisão dos gestores do setor agropecuário, em função da identificação das deficiências, pois a "ineficiência técnica sugeriria a existência de oportunidades para expandir a produção dos estabelecimentos utilizando-se o nível de insumos e a tecnologia existentes" (IMORI, 2011, p. 4), bem como as unidades de referência, de forma a elevar a eficiência e promover o crescimento municipal e estadual.

A situação problema a ser estudada nesta dissertação: Quais os fatores determinantes da eficiência técnica e da produtividade do setor agropecuário nos municípios do Estado do Tocantins?

E, para dar vazão aos questionamentos, o mote é explorar o potencial da DEA e do Índice de Malmquist na avaliação da performance das unidades produtivas agropecuárias.

Considerando o que foi versado, pode-se designar que o estímulo no desenvolvimento deste empreendimento é compreender as potencialidades e limitações da agropecuária tocantinense. Para tanto, a identificação das fontes de ineficiência e eficiência poderá subsidiar a elaboração de políticas públicas mais efetivas e otimizar a atuação dos proprietários rurais.

O objetivo geral do presente estudo é identificar os fatores determinantes da eficiência técnica e produtividade na agropecuária dos municípios tocantinenses, tendo como base os dados dos Censos Agropecuários de 1995/96 e 2006.

Ainda, com a determinação de cumprir o objetivo principal buscou-se compreender questões de ordem específicas. Dentre as quais:

- Estabelecer, através de referências literárias, a relação entre a agricultura e o crescimento e desenvolvimento econômico;
- Definir a eficiência técnica do setor agropecuário nos municípios tocantinenses, utilizando a Análise Envoltória de Dados;
- Definir a produtividade do setor agropecuário nos municípios tocantinenses utilizando o Índice de Malmquist; e
- Propor melhoria na eficiência técnica e produtividade do setor agropecuário nos municípios tocantinenses.

A hipótese principal desta dissertação considera que a orientação técnica proporciona maior eficiência nas propriedades agropecuárias nos municípios do Tocantins.

As hipóteses secundárias:

- Os municípios com o maior número de estabelecimentos da agricultura familiar possuem uma agropecuária mais eficiente;
- Os estabelecimentos agropecuários com maior número de pessoal ocupado são mais eficientes que os demais;
- Os municípios com maior número de estabelecimentos agropecuários com tratores são mais eficientes.

Além desta Introdução, a dissertação está estruturada nas motivações e objetivos da pesquisa, na revisão bibliográfica, nos procedimentos metodológicos, na apresentação e análise dos resultados, nas conclusões da pesquisa e anexos.

No primeiro capítulo, apresenta-se uma revisão da literatura sobre os principais conceitos de crescimento e desenvolvimento econômico e a importância da agropecuária para o crescimento da economia do Tocantins.

No segundo capítulo, focaliza-se a base teórica que conduz a pesquisa, ou seja, a metodologia utilizada para a avaliação do desempenho relativo da agropecuária nos municípios tocantinenses, incluindo teoria da produção, fronteira de possibilidade de produção, a discussão conceitual sobre eficiência econômica, técnica e alocativa, produtividade, bem como as características da DEA, desde suas bases conceituais, e limitações e o Índice de Malmquist.

No terceiro capítulo, pormenoriza-se o procedimento metodológico, sem ser grande magníloquo, com a definição do município como unidade tomadora de decisão (DMU) para mensuração da eficiência técnica e produtividade da agropecuária nos municípios do Tocantins. Pormenoriza-se ainda o modelo DEA utilizado, os procedimentos para a escolha dos *inputs* (entradas) e *outputs* (saídas) do modelo, as fontes de dados e os recursos computacionais.

No capítulo quarto, serão apresentados e analisados os resultados do emprego da DEA e Índice de Malmquist na avaliação da eficiência técnica e produtividade do setor agropecuário nos municípios do Estado.

À guisa de conclusão e à luz do método desenvolvido, procurar-se-á reconhecer os principais potenciais e entraves para o processo de eficiência do setor agropecuário do Tocantins.

CAPITULO I

1. AGROPECUÁRIA E O CRESCIMENTO E DESENVOLVIMENTO ECONÔMICO

Na Introdução, contextualizou-se, justificou-se, problematizou-se, apresentou-se o objetivo geral e específico, bem como as hipóteses e a estrutura desta dissertação.

O presente capítulo contribuirá para entender-se melhor a problemática do estudo, ao estabelecer as relações entre a agricultura e o crescimento e o desenvolvimento econômico, a importância do setor agropecuário para a economia regional, bem como, a caracterização do setor no Estado.

A contribuição da agropecuária para crescimento e desenvolvimento econômicos, tem sido permanentemente celebrada na Ciência Econômica. Dessa forma, o debate será realçado se, antes, as características e algumas dimensões desses processos econômicos forem destacados, como far-se-á a seguir.

1.1 Crescimento e desenvolvimento econômico

O processo de crescimento e do desenvolvimento econômico tem, desde o final da Segunda Guerra Mundial, tornado-se um dos assuntos mais intensos e recorrentes nos debates da política econômica mundial e no círculo acadêmico, notadamente no que concerne a sua distinção conceitual e a seus elementos promovedores.

O crescimento econômico caracteriza-se pelo "aumento contínuo do produto nacional em termos globais ou *per capita* ao longo do tempo, o que implica melhor eficiência do sistema produtivo" (MILONE, 1991, p. 407), ou seja, entendido como o crescimento quantitativo da produção.

O desenvolvimento para Gremaud, Vasconcellos e Toneto Júnior (2002, p. 77) é um conceito mais amplo, que engloba, inclusive o de crescimento econômico, e refere-se à expansão da produção representada pela evolução do Produto Interno Bruto (PIB), mas também a natureza e qualidade desse crescimento.

Na visão de Sandroni (2000, p. 169) o desenvolvimento econômico é o crescimento econômico (aumento do Produto Nacional Bruto *per capita*) acompanhado pela melhoria do padrão de vida da população e por alterações fundamentais na estrutura de sua economia. O desenvolvimento econômico para Baldwin (1979, p. 23) pode ser concebido como um processo dinâmico e sequencial. Mudanças em uma série de variáveis causam alterações em outra série de variáveis, que por sua vez podem produzir crescimentos na renda *per capita*. Corroborando com a assertiva anterior, Schumpeter afirma que "todo processo concreto de desenvolvimento repousa finalmente sobre o desenvolvimento precedente. [...] Todo processo de desenvolvimento cria os pré-requisitos para o seguinte" (SCHUMPETER, 1982, p. 74).

O crescimento econômico nas palavras de North e Thomas

In speaking of economic growth, we refer to a per capita long-run rise in Income. True economic growth thus implies that the total income of society must increase more rapidly than population. A stationary state, on the other hand, produces no sustained rise in per capita income even though average income may rise and fall during cycles of quite long duration (NORTH & THOMAS, 1973, p. 1).

Para Souza, o desenvolvimento econômico deve ser definido como

Crescimento econômico contínuo, em ritmo superior ao crescimento demográfico, envolvendo mudanças de estruturas e melhoria de indicadores econômicos e sociais *per capita*. É um fenômeno de longo prazo, implicando o fortalecimento da economia nacional, a ampliação da economia de mercado e a elevação geral da produtividade (SOUZA, 1993, p. 17).

A teoria econômica, e a maioria dos modelos de crescimento econômico, consideram que este gera efeitos positivos para a sociedade como um todo, apesar de não ser condição suficiente para o desenvolvimento, configura-se como requisito para superação da pobreza e para construção de um padrão digno de vida, no que se convencionou denominar de efeito de "vazamento" do crescimento (OLIVEIRA, 2002, p. 41). No entanto, o crescimento econômico *per se* não representa receita suficiente para superar a desigualdade e a pobreza e não é possível se verificar seu impacto positivo e/ou negativo no grau de equidade da sociedade (MALUF, 2000, p. 56).

Oliveira nos traz a seguinte reflexão sobre o desenvolvimento econômico

Pensar em desenvolvimento é, antes de qualquer coisa, pensar em distribuição de renda, saúde, educação, meio ambiente, liberdade, lazer, dentre outras variáveis que podem afetar a qualidade de vida da sociedade (OLIVEIRA, 2002, p. 43).

O crescimento econômico, como acontece na argumentação de Furtado, reforça os privilégios das elites e, também, que o desenvolvimento não deve se caracterizar apenas como

processo de acumulação e de aumento de produtividade macroeconômica, mas principalmente o caminho de acesso a formas sociais mais aptas a estimular a criatividade humana e responder às aspirações da coletividade (FURTADO, 2004, p. 485).

Na definição de Sen (2000, p. 409) o desenvolvimento econômico é um processo de "expansão das liberdades reais desfrutadas pelas pessoas". O Programa das Nações Unidas para o Desenvolvimento (PNUD) realça, conforme Veiga, a amplitude do desenvolvimento:

O desenvolvimento tem a ver, primeiro e acima de tudo, com a possibilidade de as pessoas viverem o tipo de vida que escolheram, e com a provisão dos instrumentos e das oportunidades para fazerem as suas escolhas (VEIGA, 2005, p. 81).

Segundo North e Thomas "the factors we have (innovation, economies of scale, education, capital accumulation, etc.) are not causes of growth; they are growth" (NORTH & THOMAS, 1973, p. 2).

A organização econômica eficiente na ótica de North e Thomas é o fator chave para o crescimento econômico

Efficient organization entails the establishment of institutional arrangements and property rights that create an incentive to channel individual economic effort into activities that bring the private rate of return close to the social rate of return (NORTH & THOMAS, 1973, p. 1).

Na visão schumpeteriana, a mola propulsora do desenvolvimento econômico encontrase na figura do empresário inovador "agente econômico que traz novos produtos para o mercado por meio de combinações mais eficientes dos fatores de produção, ou pela aplicação prática de alguma invenção ou inovação tecnológica" (SCHUMPETER, 1982, p. 9). Desta forma, o produtor inicia a mudança econômica e o consumidor seria "conduzido" a novos modos de consumir, por isso a "destruição criadora", isto é, comutar o consumo de produtos anteriores por novos (SCHUMPETER, 1982, p. 10).

O desenvolvimento é definido então pela realização de novas combinações na ótica de Schumpeter e compreende cinco casos:

1) Introdução de um novo bem — ou seja, um bem com que os consumidores ainda não estiverem familiarizados — ou de uma nova qualidade de um bem. 2) Introdução de um novo método de produção, ou seja, um método que ainda não tenha sido testado pela experiência no ramo próprio da indústria de transformação, que de modo algum precisa ser baseada numa descoberta cientificamente nova, e pode consistir também em nova maneira de manejar comercialmente uma mercadoria. 3) Abertura de um novo mercado, ou seja, de um mercado em que o ramo particular da indústria de transformação do país em questão não tenha ainda entrado, quer esse mercado tenha existido antes, quer não. 4) Conquista de uma nova fonte de oferta de matérias-primas ou de bens semimanufaturados, mais uma vez independentemente do fato de que essa fonte já existia ou teve que ser criada. 5) Estabelecimento de uma nova organização de qualquer indústria, como a criação de uma posição de monopólio (por exemplo, pela trustificação) ou a fragmentação de uma posição de monopólio (SCHUMPETER, 1982, p. 76).

Nas considerações de Mankiw (2001, p. 532-535) explicar a variação do padrão de vida de uma nação é relativamente simples e, pode ser resumida por um único substantivo, a produtividade, ou seja, a quantidade de bens e serviços gerados por trabalhador, determinada pela disponibilidade do capital físico, humano, recursos naturais e conhecimento tecnológico. Mas, entender porque a eficiência e produtividade são tão desalinhadas e quais são seus vetores impulsionadores de crescimento nas diversas regiões torna-se fator-chave para formular políticas de investimentos para os diversos setores econômicos, no caso presente, o setor agropecuário.

1.2 Agricultura e o crescimento e desenvolvimento econômico

As discussões sobre os impactos da agricultura no processo de desenvolvimento não são novas e estão presentes na Ciência Econômica desde os fisiocratas, cuja assertiva fundamental baseava-se em que toda riqueza advinha da terra, ou seja, apenas a agricultura, era realmente capaz de criar algo novo, obter excedente superior ao esforço empregado na produção, isto é, ganhos de produtividade agrícola como impulsionadores do desenvolvimento econômico (FUSFELD, 2003, p. 27).

Em "A Riqueza das Nações", Adam Smith, se opõe às ideias mercantilistas, considerando que o trabalho pode ser produtivo fora da agricultura ao gerar valor e o nível da produção resulta da divisão do trabalho, da elevação do capital, isto é, a máquina e os equipamentos aumentam a produtividade do trabalho (SOUZA, 1993, p. 53).

Na perspectiva de David Ricardo, o setor agrícola configurava-se como um entrave ao crescimento econômico e acreditava-se que não existiria progresso técnico no setor agrícola, o que levaria ao estado estacionário da economia (OLIVEIRA e PEREIRA, 2010, p. 5).

Problema do crescimento econômico estava na agricultura, incapaz de produzir alimentos baratos para consumo dos trabalhadores, o que gerava elevações dos salários nominais e do valor dos fundos de salários, necessários para contratar trabalhadores produtivos, adquirir meios de produção e elevar o nível do produto (SOUZA, 1993, p. 57).

A economia dividir-se-ia em dois setores, segundo Ricardo, o agrícola e o manufatureiro, os quais dependeriam da mão de obra, terra e capital para aumentar o nível da produção. O setor manufatureiro sujeito ao aperfeiçoamento tecnológico e o agrícola, a uma tecnologia praticamente estacionária (ALBUQUERQUE e NICOL, 1987, p. 4).

A agricultura contribui pouco, na visão de alguns economistas, para o crescimento econômico (NORTH, 1977, p. 333). Para North, esse argumento se desenvolveu em duas correntes

A primeira identifica o crescimento econômico com uma revolução industrial e argumenta que uma "arrancada" para a industrialização "pode deixar de ocorrer principalmente porque a vantagem comparativa da exploração da terra agrícola e de outros recursos naturais retarda o início de um vantajoso crescimento industrial

auto-reforçado".[...] Baseia-se nos rendimentos decrescentes da agricultura e na maior produtividade da indústria. O segundo argumento é bastante diferente e, com efeito, se baseia em diferentes fundamentos teóricos. 1) O desenvolvimento econômico ocorre em uma matriz de localização específica; podem existir uma ou mais matrizes um uma economia particular. O processo de crescimento econômico não ocorre do mesmo modo, na mesma época, ou com a mesma intensidade, em lugares diferentes. 2) Essas matrizes locacionais são, primeiramente, de composição urbano-industrial; como os centros em que ocorre o desenvolvimento econômico não se situam geralmente em áreas rurais ou agrícolas, embora algumas áreas agrícolas estejam mais bem situadas que outras em relação a tais centros. 3)A organização econômica existente opera melhor dentro ou perto do centro de uma determinada matriz de desenvolvimento econômico ou também, naquelas partes agrícolas favoravelmente situadas em relação a tal centro; e opera menos satisfatoriamente naquelas partes da agriculta que estão situadas na periferia de tal matriz (NORTH, 1977, p. 333-334).

Desta forma, North (1977) propugna que o dínamo do crescimento econômico seja o desenvolvimento industrial, e a agricultura, uma variável dependente.

Para Araújo & Schuh (1995, p. 25), trata-se de um equivocado paradigma, pois as interrelações e interações dos setores (agrícola e industrial) são muito nítidas e não se se trata de uma situação de um ou outro para o desenvolvimento econômico. Caso fosse assim, a economia não avançaria em qualquer uma das duas frentes se a outra não estivesse concomitantemente crescendo. "À medida que se intensificam as relações de interdependência entre os setores agrícola e industrial, a expansão de um deles fica condicionada ao desempenho do outro" (SOUZA, 1993, p. 185).

No entanto, para outra corrente de economistas, a agricultura exerce papel importante no processo de "crescimento econômico e na determinação do equilíbrio entre os diversos setores econômicos, em virtude dos seus efeitos de encadeamento" (SOUZA, 1993, p. 165), (retrospectivos e prospectivos), e também na relação

1) inversión pública directa o estímulos a la inversión, 2) dotaciones presupuestales para la investigación gubernamental y programas de extensión educativa, y 3) la carga del impuesto aplicado a diferentes sectores (JOHNSTON & MELLOR, 1961, p. 279).

As contribuições mais importantes da agricultura para o crescimento econômico, segundo Johnston e Mellor, podem ser destacadas em cinco funções:

1) El desarrollo económico se caracteriza por un incremento sustancial en la demanda de productos agrícolas; el fracaso para expandir la oferta de alimentos al ritmo de crecimiento de la demanda puede obstaculizar seriamente el crecimiento económico; 2) La expansión de las exportaciones de productos agrícolas puede ser uno de los medios más prometedores de aumento del ingreso y de divisas, particularmente en las primeras etapas del desarrollo; 3) La fuerza de trabajo para la industria de transformación y otros sectores en expansión de la economía debe tomarse principalmente de la agricultura; 4) La agricultura, como sector dominante de una economía subdesarrollada, puede y debe hacer una contribución neta al capital necesario para la inversión fija y para el crecimiento de la industria secundaria, 5) La elevación de los ingresos netos en efectivo de la población agrícola puede ser importante como estímulo de la expansión industria (JOHNSTON & MELLOR, 1961, p. 284-285).

A teoria do crescimento regional descreve sequência dos estágios que as regiões percorrem para se alcançar seu desenvolvimento:

1)Economia de subsistência, auto-suficiente, na qual existe pouco investimento ou comércio. A camada principal da população, a agrícola, localiza-se de acordo apenas com a distribuição dos recursos naturais. 2) Melhorias nos transportes, a região passa a desenvolver algum comércio e especialização local. "Surge uma segunda camada da população que começa a gerir modestas indústrias locais para os agricultores. Uma vez que as matérias-primas, o mercado e a mão-de-obra são supridas originalmente pelas populações agrícolas, a nova "super-estrutura industrial", tem sua localização determinada pela localização da camada básica". 3) O aumento do comércio inter-regional a região tende a se deslocar através de uma sucessão de culturas agrícolas, que vão da pecuária extensiva à produção de cereais, à fruticultura, à produção de laticínios e à horticultura. 4) O crescimento da população e dos rendimentos decrescentes da agricultura e das outras indústrias extrativas, a região é forçada a se industrializar. Os primeiros estágios de industrialização baseiam-se, tipicamente, em produtos agrícolas e florestais e incluem atividades como processamento de alimentos, artefatos de madeira e preparação de fibras têxteis. Caso a industrialização prossiga, os recursos minerais e energéticos assumem importância decisiva. Como segundo estágio de industrialização, encontramos, então (nas regiões que possuem recursos naturais economicamente viáveis), indústrias tais como as de fundição, refinação e processamento de metais, refinamento de petróleo, indústrias químicas baseadas principalmente no carvão, petróleo, potassa, sal e outros minerais, indústria de vidro e cerâmicas. Quando existe energia elétrica barata, torna-se possível a implantação de indústrias que dela necessitam em grandes quantidades (refinação de metais nãoferrosos, ligas de metais, aços especiais, abrasivos artificiais, etc.) 5) Atinge-se o estágio final do desenvolvimento regional quando a região se especializa em atividades terciárias, produzindo para exportação. Nesse estágio a região exporta capital, mão-de-obra qualificada e serviços especiais para as regiões menos desenvolvidas. Aos custos de transporte têm sido atribuído um papel fundamental no avanço através desses estágios sucessivos de desenvolvimento (NORTH, 1977, p. 2-3).

A relação agrícola e industrial, também passaria por estágios e de formas distintas em economias subdesenvolvidas e desenvolvidas. Para B. W. Hodder (1968), na fase inicial

dessa situação que tipificou como *continuum*, as características básicas seriam de baixa densidade demográfica e eminentemente agrícola, cujas singularidades básicas seriam o pioneirismo, o espírito desbravador dos agricultores, a baixa intensidade de capital e a mão-de-obra, realizada em grandes extensões e alta rotatividade de terras e a mais apropriada para fixação do homem no campo. Entrementes, pode levar à exaustão do solo, à perda de fertilidade e à erosão do solo (ALBUQUERQUE & NICOL, 1987, p. 2).

No segundo estágio, conforme B. W. Hodder (1968), a área explorada deve ser menor, preservando a mesma quantidade de produção. Majoritariamente a mão-de-obra ainda estaria empregada no setor agrícola e com baixa intensidade de capital, mas o cultivo seria permanente, guardando dessa forma a distinção básica entre os dois estágios.

O surgimento do setor industrial e a ampliação do emprego no setor caracterizaria o início do terceiro estágio, bem como, a utilização de controle de pragas nas lavouras, a mecanização da agricultura, com uso de técnicas capital-intensivas, e, por conseguinte, diminuição da força humana empregada no setor (ALBUQUERQUE & NICOL, 1987, p. 2).

Os estágios posteriores marcariam a agricultura com a administração científica, reduzida empregabilidade e uso intensivo de capital e tecnologia, o que se convencionou denominar de agricultura moderna.

1.3 A agricultura no Brasil

A agricultura nacional, desde a colonização (1500-1822), Império (1822-1889) e República Velha (1889-1930), determinou o dinamismo da economia brasileira e baseou-se na exportação de *commodities*, a partir do açúcar, algodão, café e borracha, notadamente, mas também, do pau-Brasil, fumo, cacau, couros e peles. Nesse período, a diversificação da capacidade produtiva era forçosamente limitada, dada a base estreita em que se assentava: apenas um ou dois produtos primários (TAVARES, 1977, p. 30). Essa característica determinou, no período, o país como uma economia agroexportadora e, até os dias atuais, a agropecuária tem função importante na produção de superávit comercial.

Tavares assim caracteriza as economias primário-exportadoras:

As economias primário-exportadoras caracterizam-se por duas variáveis básicas: as exportações como variável exógena responsável pela geração importante de parcela da renda e pelo crescimento da mesma e as importações de bens e serviços necessários ao atendimento de parte apreciável da demanda interna (TAVARES, 1977, p. 29).

Dessa forma, o desenvolvimento da agropecuária brasileira consistiu, inicialmente, em escolher produtos para o mercado externo, sendo a terra o fator principal, por ser o único fator de produção abundante (FURTADO, 1974, p. 113).

As características que se seguiram até o último quartel do século XIX e os três decênios do século XX, foram especializações produtivas das regiões brasileiras, "a economia brasileira se apresentava como uma constelação de sistemas em que alguns se articulavam entre si e outros permaneciam praticamente isolados" (FURTADO, 1974, p. 90).

No complexo nordestino, a produção concentrava-se basicamente no litoral com a cultura do açúcar; no Maranhão a produção do algodão (metade do século XIX) foi um magnífico negócio em função do preço, vindo a declinar rapidamente com a grande produção Estadunidense; o fumo, o cacau, os couros e arroz eram produtos menores, com capacidade reduzida para exportação. O fumo perdera mercado com a abolição da escravidão e o cacau, com maior concentração na Bahia, representava aproximadamente 1,5% do valor das exportações ao final do século XIX (FURTADO, 1974, p. 147).

Na região amazônica, principalmente o Pará e o Amazonas, viviam da economia extrativista, sendo a borracha, no referido período, a matéria prima de maior demanda no mercado mundial.

No sul do país, o Estado do Paraná compatibilizou a economia de subsistência e de exportação, no caso, com a produção de erva-mate; no Rio Grande do Sul, com o setor pecuário.

O complexo cafeeiro constituiu-se principalmente nos Estados do Sudeste, sendo o período da República Velha o ápice da economia agroexportadora (FURTADO, 1974).

A criação de riqueza no país, para Holanda (1995), desde o principio, não cessou de valer um só momento para a produção agrária

Todos queriam extrair do solo excessivos benefícios sem grandes sacrifícios. Ou, como já dizia o mais antigo dos nossos historiadores, queriam servir-se da terra, não como senhores, mas como usufrutuários, ou seja, desfrutarem e a deixarem destruída (HOLANDA, 1995, p. 52).

A história dos ciclos agrícolas, dessa forma, constituiu-se em uma sequência de arrancadas e declínios com resultados insuficientes para o crescimento econômico regional de longo prazo.

A crise de 1930 provocou o deslocamento do centro dinâmico da economia nacional, pois o elemento essencial para a determinação do nível de renda passa a ser o mercado interno, caracterizado pelo consumo e o investimento doméstico, divergente do modelo agroexportador, baseado na demanda externa. A partir da década de 1930, como resposta à crise econômica global, o setor industrial passa a ganhar espaço, em detrimento do setor agrícola, na geração de valor adicionado na economia brasileira (GREMAUD, VASCONCELLOS e TONETO JÚNIOR, 2002, p. 360). No entanto, o início do processo substituidor de importação fora financiado basicamente pelas rendas do setor agroexportador.

O Governo Vargas, em 1931, tomou medida que pode ser considerada como a fase inicial da política agrícola nacional ao "transferir para responsabilidade do Governo Federal a política cafeeira e criar o Conselho Nacional do Café (CNC)" (COELHO, 2001, p. 5), a política visou regular o equilíbrio oferta/demanda em nível mundial, a preços que garantissem uma receita cambial condizente com as expectativas do Brasil. Posteriormente o CNC foi extinto e substituído pelo Departamento Nacional do Café (DNC) em 1933, federalizando definitivamente a política agrícola do café.

Além da fase inicial, a evolução da política agrícola, desenvolveria ainda outras três fases (COELHO, 2001, p. 5), a segunda, a modernização da agricultura (1965-1985), caracterizada pela reformulação da Política de Garantia dos Preços Mínimos (PGPM) e criação do Sistema Nacional de Crédito Rural (SNCR), em 1965, ampliação dos estímulos à pesquisa agropecuária, criação da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), à extensão rural, com a criação da Empresa Brasileira de Extensão Rural (EMBRATER). O período foi marcado pelo uso intensivo de subsídios no crédito rural e da PGPM, como forma de expansão da fronteira agrícola.

Os resultados foram significativos, que propiciou o "nascimento" do *agribusiness* brasileiro, baseado na produção de grãos e na agroindústria a ela relacionada. Os resultados alcançados são expressivos: entre 1965 a 1985, a produção de grãos saltou de 25,10 milhões de toneladas para 56,19 milhões, 123,8% de crescimento, baseado na expansão da área plantada e da produtividade (área de grãos cresceu 75,0% e a produtividade, 27,8%). A produção de soja, inexpressiva em 1965, alcançou 18,30 milhões de toneladas em 1985, passando a ser ator relevante na economia mundial de soja, desde então (COELHO, 2001, p. 31).

As políticas econômicas da década de 70 puniam a agricultura em nível macroeconômico e compensavam em nível microeconômico, com crédito abundante e baixos juros, contribuindo com o chamado "milagre" econômico brasileiro, mesmo que parcialmente, entrementes, com agravamento da concentração da renda. Devido às dificuldades fiscais, o setor de crédito oferecia fonte contínua de déficit fiscal ao Governo Federal e ao controle inflacionário. A partir da década de 1980, os subsídios e recursos destinados à agropecuária foram escasseando, marcando também o esgotamento do processo de substituição de importações.

A terceira fase, denominada de transição da agricultura (COELHO, 2001, p. 5), foi marcada pelos planos de estabilização econômica, abertura comercial, redução abrupta do crédito rural, maior utilização da PGPM em função do alto endividamento do setor e o surgimento das discussões dos valores ambientais nos instrumentos de política agrícola. "Após 1995, o Governo promoveu reformulação nos instrumentos de apoio à comercialização, com a criação de instrumentos e manutenção das Aquisições do Governo Federal (AGF) e Empréstimos do Governo Federal (EGF), em casos especiais" (COELHO, 2001, p. 38).

Através do EGF, o Governo financia a estocagem e o transporte de produtos no curto prazo, permitindo ao agricultor maior poder de barganha no mercado. Através do AGF, o Governo forma estoques reguladores de preços, garantindo aos agricultores a venda dos produtos pelos preços mínimos (LUCENA E SOUZA, 2001, p. 59).

A quarta fase, para Coelho (2001, p. 6), começa em 1995, com iniciativa do Governo Federal em atenuar o endividamento rural, com a securitização, novos instrumentos de política agrícola, um perfil neoliberal, orientado para o mercado (Prêmio para o Escoamento de Produto (PEP) e contratos de opções, criados em 1997, como possibilidade dos produtores desenvolverem suas próprias estratégias diante das oscilações do mercado), menor intervenção no setor, abertura comercial e presença relevante das questões ambientais na agricultura. O PEP, implantado em 1996, substituiu em muitos casos as AGF, evitando o acúmulo de estoques governamentais anteriormente verificados (COELHO, 2001, p. 47). Cabe destacar que, no primeiro quartel da década de 90, o Plano Real devolve a estabilidade econômica, com inflação controlada em índices reduzidos e a correção monetária não mais asfixia os produtores.

A modernização do segmento agrícola nacional, em que pese à manutenção da estrutura agrária concentrada e uma pobreza rural significativa, integraram-se à economia, consolidando, conforme Feijó (2012), três setores tradicionais do agronegócio

1) A produção de excedentes agrícolas para o mercado; 2) a produção de fatores agrícolas, não pelos agricultores, mas por fornecedores dos quais aqueles os adquirem; 3) o setor de comercialização, transporte e processamento dos produtos agrícolas – também não realizados pelos agricultores (FEIJÓ, 2012, p. 30).

No processo de transformação da agricultura prevaleceu o modelo de insumos modernos, acreditando-se que os investimentos apresentariam retornos significativos do ponto de vista privado e social. Ocorrera para Feijó (2012) divisão de funções entre os setores públicos e privados no modelo de modernização

O investimento público priorizou as instituições de pesquisa para gerar novos conhecimentos técnicos, com iniciativas em educação e extensão, a fim de dotar os agricultores de capacidade e habilidade no uso eficiente dos insumos modernos. O investimento privado concentrou-se no segmento industrial para produzir e comercializar os insumos modernos (FEIJÓ, 2012, p. 31).

O setor agrícola nacional, desta forma, a partir principalmente da segunda metade do século XX, cumprira seu papel no crescimento econômico do país: no período, não atravessou graves crises de escassez de alimentos. O processo de industrialização foi financiado com o capital retirado da agricultura; funcionou como reserva de mão-de-obra para o núcleo urbano e a geração de divisas do setor agroexportador, em bom "tom", custeou a contratação de máquinas e aquisição de tecnologias.

1.4 Caracterização da área de estudo

1.4.1 Características naturais

O Estado do Tocantins, na divisão geopolítica nacional, situa-se na região Norte (Figura 1) e na Amazônia Legal (Acre, Amapá, Amazonas, Maranhão, Mato Grosso, Pará, Rondônia,

Roraima e Tocantins) (Figura 2). Área territorial de 277.720,520 km², 9º Estado em extensão territorial, 3,2% do território nacional, 7,2% da região Norte e 5,4% da Amazônia Legal. Faz limite geográfico com seis Estados da Federação, sendo Goiás ao sul, a sudoeste Mato Grosso, a noroeste o Pará, a norte e nordeste o Maranhão, a leste com o Piauí e o Estado da Bahia.

A capital, Palmas, foi instalada em 1990 e atualmente o estado conta com 139 municípios. O Tocantins é subdividido em oito microrregiões conforme o Instituto Brasileiro de Geografia e Estatística (IBGE): Bico do Papagaio, Araguaína, Miracema do Tocantins, Jalapão, Porto Nacional, Rio Formoso, Gurupi e Dianópolis. Para a Secretaria do Planejamento e da Modernização da Gestão Pública do Estado (SEPLAN), são 18 regiões: Araguatins, Augustinópolis, Tocantinópolis, Xambioá, Araguaína, Colinas do Tocantins, Goiatins, Guaraí, Palmas, Pedro Afonso, Paraíso do Tocantins, Novo Acordo, Natividade, Gurupi, Dianópolis, Paranã, Arraias e Taguatinga.

Figura 1: Localização do Estado do Tocantins

Figura 2: Amazônica Legal

Fonte: IBGE (2012) Fonte: IBGE (2012)

O regime climático possui característica atmosférica da região amazônica, as precipitações pluviométricas médias anuais situam-se de 1.300 mm na região sudeste a 2.100 mm na região oeste do Estado; temperatura média anual do ar de 26°C, temperatura máxima de 42°C e a mínima de 8°C, na microrregião de Dianópolis. Seu clima é úmido, tropical; encontra-se na região de contato dos biomas amazônico e cerrado, com a região de floresta

concentrada ao norte do Estado (9,7%) de extensão da área do Estado e de cerrado ocupando (87,8%) da sua extensão territorial (SEPLAN, 2012).

Os sistemas hidrográficos são formados pelos rios Araguaia (37,7% da área do Estado) e Tocantins (62,3% da área do Estado). No sistema hidrográfico do rio Araguaia predominam os rios de planície e no do rio Tocantins predominam os rios de planaltos e depressões.

No contexto nacional, os sistemas hidrográficos Araguaia-Tocantins possuem alta relevância geoeconômica, seja para a produção hidroelétrica, agrícola ou logística de transporte. A capacidade instalada de produção hidroelétrica no rio Tocantins, segundo a Agência Nacional de Energia Elétrica (ANEEL), é de 11.563 MW. Em solo tocantinense produz 2.679,5 MW, ou 3,4% da produção brasileira, operando com as Usinas Hidrelétricas (UHE's) Luis Eduardo Magalhães, Peixe-Angical, São Salvador e Estreito (ZEE, 2005, p. 36).

As áreas de uso intensivo para a produção estão predominantemente na porção sul do Estado. Os solos latossolos, que ocupam 22% da área total do estado, embora de baixa fertilidade, são facilmente corrigidos e sua aptidão agrícola está voltada a culturas de ciclo curto e longo e para pecuária intensiva. Na planície do Araguaia predominam os solos plintossolos, propícios à agricultura irrigada e subirrigada (11% da área total); na região leste do Estado (microrregião do Jalapão) predominam os solos de areias quartzosas, inaptos para a agricultura, sendo recomendados para pastagens naturais e/ou silvicultura; na região norte do Estado, os solos característicos são os latossolos, podzólicos e pequenas porções de solos litólicos possuem limitação reduzida, sendo necessário o uso intensivo de corretivos e adubos (SEPLAN, 2012).

O uso/ocupação do solo no Estado, segundo o Plano Estadual de Irrigação, distribui-se da seguinte forma, de acordo com a tabela 1:

Tabela 1: Uso e ocupação do solo - Tocantins.

USO/OCUPAÇÃO	% DO ESTADO
Área Agrícola	0,54
Agricultura Irrigada	0,11
Campo Cerrado	51,10
Campo/Pastagem	17,16
Cerrado de Pantanal	4,69
Formação Florestal/Ciliar	25,35
Lâmina D'água	1,00
Zona Urbana	0,05
E . Di E . 1 1 1	T ' ~ (0011)

Fonte: Plano Estadual de Irrigação (2011)

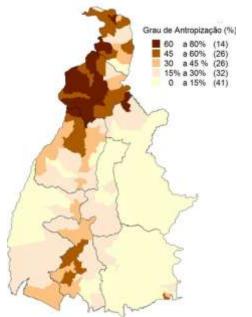

A cobertura vegetal do Estado no período de 1990 a 2007, apresentada na tabela 2 e figuras 3 e 4, (SEPLAN, 2010) sofreu significativa transformação. Sua área antropizada corresponde a 32,8% da área do Estado, com crescimento de 2,5% ao ano no período (1990-2007). A agropecuária é responsável por 89,3% desse crescimento. A atividade agropecuária na microrregião de Gurupi é responsável por 98% da área antropizada. A pecuária, segundo os estudos realizados no Plano Estadual de Uso e Cobertura do Solo (SEPLAN, 2010), configura-se como a principal atividade de impacto para a antropização das regiões do Estado, com uma correlação de 0,843, o emprego agrícola 0,677 e a aptidão agrícola de 0,602, no período de 2000-2007.

Tabela 2: Evolução da área antrópica (ha), percentual da área antrópica em relação à área total e percentual da agropecuária em relação à área antrópica total, para as microrregiões e para o Estado do Tocantins, 1990, 2000, 2005 e 2007

MICRORREGIÃO	VARIÁVEL VARIÁVEL	1990	2000	2005	2007
	Área Antrópica (ha)	1.615.062,9	1.743.134,5	1.751.985,0	1.760.692,9
Araguaína	% da área antrópica/área total	48,5%	55,5%	57,0%	55,7%
	% área agropecuária/área antrópica	79,5%	84,4%	86,2%	83,8%
	Área Antrópica (ha)	627.931,7	680.741,5	754.021,1	766.158,4
Bico do Papagaio	% da área antrópica/área total	26,5%	32,3%	37,9%	38,5%
	% área agropecuária/área antrópica	66,6%	74,8%	79,2%	79,1%
	Área Antrópica (ha)	340.233,5	450.300,9	578.984,8	625.806,2
Jalapão	% da área antrópica/área total	6,1%	7,9%	9,1%	9,9%
	% área agropecuária/área antrópica	96,5%	93,2%	83,6%	84,4%
	Área Antrópica (ha)	1.117.917,6	1.382.719,5	1.628.069,2	1.748.207,7
Miracema	% da área antrópica/área total	28,3%	36,0%	43,4%	46,7%
	% área agropecuária/área antrópica	87,9%	90,4%	92,6%	92,7%
	Área Antrópica (ha)	812.261,6	1.002.750,7	1.129.375,6	1.148.468,4
Gurupi	% da área antrópica/área total	28,4%	35,5%	40,2%	41,0%
	% área agropecuária/área antrópica	95,9%	97,2%	97,7%	98,0%
	Área Antrópica (ha)	378.122,6	584.923,9	840.436,0	943.456,9
Dianópolis	% da área antrópica/área total	7,2%	10,8%	15,9%	18,0%
	% área agropecuária/área antrópica	89,8%	87,3%	89,1%	89,8%
	Área Antrópica (ha)	324.122,6	492.809,5	563.114,1	606.855,9
Porto Nacional	% da área antrópica/área total	14,7%	21,2%	24,2%	25,9%
	% área agropecuária/área antrópica	96,4%	91,3%	91,1%	90,4%
	Área Antrópica (ha)	814.516,4	1.126.034,2	1.335.165,2	1.433.617,0
Rio Formoso	% da área antrópica/área total	14,0%	19,7%	23,3%	25,4%
	% área agropecuária/área antrópica	88,3%	90,0%	89,5%	91,2%
Tocantins	Área Antrópica (ha)	6.014.378,8	7.460.491,2	8.468.580,5	9.101.740,6
	% da área antrópica/área total	21,7%	26,9%	30,5%	32,8%
	% área agropecuária/área antrópica	85,6%	88,4%	89,1%	89,3%

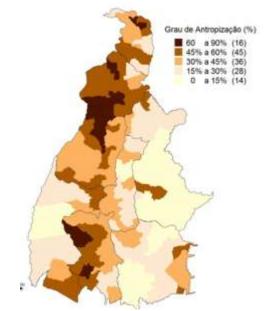

Fonte: SEPLAN, Plano Estadual de Uso e Cobertura do Solo (2010).

Figura 3: Áreas de antropização do Estado em 1990

Fonte: Seplan, Plano Estadual de Uso e Cobertura do Solo (2010).

Figura 4: Áreas de antropização do Estado em 2007

Fonte: Seplan, Plano Estadual de Uso e Cobertura do Solo (2010)

- 1.4.2 Características demográficas econômicas
- 1.4.2.1 Características demográficas

Desde o Censo Demográfico de 1991, o crescimento demográfico vem demonstrando desaceleração. No período censitário de 1991 a 2000 a população cresceu a taxas de 2,6% ao ano, na década seguinte (2000 a 2010) a taxas de 1,8% ao ano, mesmo assim, acima do crescimento nacional que no mesmo período (2000 a 2010) cresceu 1,2% ao ano, como exposto na tabela 3. No entanto, o crescimento tem se apresentado bastante desigual, pois 64 (46% do total) municípios tocantinenses ou apresentaram taxas decrescentes ou crescimento inferiores a 1% ao ano. A cidade de Palmas, no período de 2000 a 2010 foi a capital que mais cresceu no país, com taxa de 5,2% ao ano.

Os dez municípios mais populosos respondiam por 49% da população do Estado, (Tabela 4) segundo o Censo Demográfico de 2010, e localizam-se às margens da rodovia Transbrasiliana, ou distância máxima de 70 km, excetuando-se Araguatins, que dista 150 km da rodovia.

Tabela 3: População total Tocantins: 1991/2010.

UNIDADE				DENSIDADE 1991	DENSIDADE 2000	DENSIDADE 2010
	1991	2000	2010	(HAB/KM ²)	(HAB/KM ²)	(HAB/KM ²)
Tocantins	920,116	1,157,098	1,383,445	3.31	4.17	4.98

Fonte: IBGE, Censo Demográfico 1991 a 2010

Tabela 4: População dos 10 maiores municípios -1991 a 2010

MUNICÍPIOS	1991	2000	2010
1. Palmas	24.334	137.355	228.332
2. Araguaína	91.630	113.143	150.484
3. Gurupi	54.429	65.034	76.755
4. Porto Nacional	43.224	44.991	49.146
5. Paraíso do Tocantins	28.825	36.130	44.417
6. Araguatins	11.851	25.301	31.329
7. Colinas do Tocantins	21.018	26.010	30.838
8. Guaraí	20.822	20.018	23.200
9. Tocantinópolis	27.885	22.777	22.619
10. Miracema do Tocantins	20.815	24.444	20.684
TOTAL	344.833	515.203	677.804
TOCANTINS	920.116	1.157.098	1.383.445
(%) MUNICÍPIOS/TOCANTINS	37,48	44,53	48,99

Fonte: IBGE, Censos Demográficos, 1991, 2000 e 2010

O crescimento da população urbana foi expressivo de 1991 a 2010 (tabela 5), com taxa média anual de 3,9% ao ano, passando de aproximadamente 530 mil habitantes para mais de 1 milhão de habitantes. Inversamente a população rural decresceu -1,5% ao ano. Sua população declinou de 389 mil para pouco mais de 293 mil pessoas. O resultado desse processo foi o grau de urbanização que saltou de 57,8% a 78,8%, se aproximando da taxa nacional (tabela 6). O Tocantins apresentou nos últimos 10 anos(2000/2010), o maior percentual de migrantes oriundos de outras Grandes Regiões brasileiras, sendo que, 155.540 pessoas residiam há menos de 10 anos no Estado, segundo o lugar de residência anterior, o que representava 68,7%, do saldo do crescimento total da população no período de 2000/2010 (IBGE, 2010).

Tabela 5: População Urbana, Rural e Taxa de Crescimento -1991 a 2010

SITUAÇÃO DO		ANO		TX. CRESCIMENTO
DOMICÍLIO	1991	2000	2010	ANUAL (1991/2010)
Total	919,863	1,157,098	1,383,445	2.17
Urbana	530,636	859,961	1,090,106	3.86
Rural	389,227	297,137	293,339	-1.48

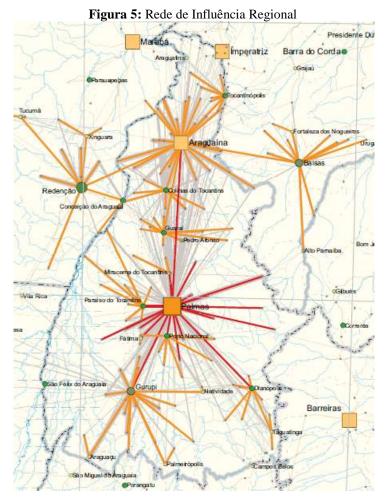
Fonte: IBGE, Censos Demográficos, 1991, 2000 e 2010

Tabela 6: Distribuição percentual da população nos Censos Demográficos, Brasil e Tocantins - 1991/2010.

		URBANA		RURAL				
UNIDADES	1991	2000	2010	1991	2000	2010		
Brasil	75.5%	81.2%	84.4%	24.5%	18.8%	15.6%		
Tocantins	57.7%	74.3%	78.8%	42.3%	25.7%	21.2%		

Fonte: IBGE, Censo Demográfico, 1991, 2000 e 2010

A análise microrregional do desempenho populacional nos mostra, novamente, comportamento significativamente distinto, de acordo com a tabela 7. Os dados censitários apresentam as altas taxas de crescimento da microrregião de Porto Nacional no período de 1991 a 2010 (6,09% a.a.), onde situa-se a capital e baixíssimo crescimento na microrregião de Dianópolis (0,68% a.a.) no mesmo período.


Segundo os dados de 1991, nas microrregiões do Bico do Papagaio, Jalapão e Dianópolis a população rural era superior à urbana. Passadas duas décadas, a população tocantinense já era eminentemente urbana, principalmente nas microrregiões onde se situam as três maiores cidades do Estado, Araguaína, Palmas e Gurupi. Mas, na microrregião do Jalapão a população rural ainda é bastante expressiva.

O Tocantins possui uma rede urbana concentrada (Figura 5), com duas capitais regionais, Palmas e Araguaína. No estudo do IBGE sobre as Regiões de Influência das Cidades (2008), Palmas é uma capital regional do tipo B, cujas características são "capacidade de gestão no nível imediatamente inferior ao das metrópoles, têm área de influência de âmbito regional, sendo referidas como destino, para um conjunto de atividades, por grande número de municípios" (IBGE, 2008, p. 11); Araguaína, também capital regional, mas do tipo C (menor número de relacionamentos municipais); o município de Gurupi, segundo a metodologia de classificação, é considerado um centro sub-regional do tipo B, "têm área de atuação mais reduzida, e seus relacionamentos com centros externos à sua própria rede dão-se, em geral, apenas com as três metrópoles nacionais" (IBGE, 2008, p. 11). As cidades de Dianópolis, Paraíso do Tocantins, Porto Nacional, Colinas do Tocantins, Guaraí e Tocantinópolis são rotuladas como centro de zona A, ou seja, "cidades de menor porte e com atuação restrita à sua área imediata; exercem funções de gestão elementares" (IBGE, 2008, p. 11).

Tabela 7: Distribuição percentual da população nos Censos Demográficos, Microrregional - 1991/2010.

Tabela 7: Distribuição p	l	nação nos C	ciisos Dei	nograncos		gional - 19	71/2010.	
UNIDADE DA	SITUAÇÃO				ANO			
FEDERAÇÃO E MICRORREGIÃO GEOGRÁFICA	DO DOMICÍLIO	1991	%POP	2000	%POP	2010	%POP	% TX CRES
	Total	141,530	100	174,224	100	196,367	100	1.74
Bico do Papagaio	Urbana	67,595	48	110,993	64	129,851	66	3.50
	Rural	73,935	52	63,231	36	66,516	34	-0.56
	Total	187,084	100	229,292	100	278,707	100	2.12
Araguaína	Urbana	134,312	72	182,923	80	232,772	84	2.94
	Rural	52,772	28	46,369	20	45,935	16	-0.73
Minagama da	Total	123,366	100	136,115	100	142,293	100	0.75
Miracema do Tocantins	Urbana	70,284	57	94,071	69	99,636	70	1.85
Tocantins	Rural	53,082	43	42,044	31	42,657	30	-1.14
	Total	90,867	100	102,471	100	116,002	100	1.29
Rio Formoso	Urbana	52,411	58	80,119	78	91,715	79	2.99
	Rural	38,456	42	22,352	22	24,287	21	-2.39
	Total	112,482	100	121,858	100	137,217	100	1.05
Gurupi	Urbana	78,179	70	101,183	83	116,236	85	2.11
	Rural	34,303	30	20,675	17	20,981	15	-2.55
	Total	103,039	100	218,656	100	322,824	100	6.19
Porto Nacional	Urbana	70,832	69	195,850	90	295,078	91	7.80
	Rural	32,207	31	22,806	10	27,746	9	-0.78
	Total	57,718	100	62,310	100	71,925	100	1.16
Jalapão	Urbana	13,264	23	27,359	44	40,737	57	6.08
	Rural	44,454	77	34,951	56	31,188	43	-1.85
	Total	103,777	100	112,172	100	118,110	100	0.68
Dianópolis	Urbana	43,759	42	67,463	60	84,081	71	3.50
	Rural	60,018	58	44,709	40	34,029	29	-2.94

Fonte: IBGE, Censos Demográficos, 1991, 2000 e 2010

Fonte: IBGE, Regiões de Influência das Cidades (2008)

1.4.2.2 Características econômicas

O crescimento econômico do Tocantins, entre 2002 e 2010, é superior à média nacional, com o maior crescimento acumulado no período (74,2%), ante (37,1%) do Brasil e (57,2%) da Região Norte. Ocupava em 2010 a 24º posição no ranking dos PIB´s estaduais, ver tabela 8 e 9.

Tabela 8: Produto Interno Bruto (PIB) a preços correntes, segundo Regiões Geográficas e Unidades da Federação - Brasil- 1995-2010

REGIÃO GEOGRÁFICA							PIB A PI	REÇOS CO	RRENTES	(R\$1.000.00	00,00)					
E UNIDADE DA FEDERAÇÃO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Brasil	705,641	843,966	939,147	979,276	1,065,000	1,179,482	1,302,135	1,477,822	1,699,948	1,941,498	2,147,239	2,369,484	2,661,345	3,031,864	3,239,404	3,770,085
Norte	29,793	36,328	38,710	40,955	44,418	51,706	59,074	69,310	81,200	96,012	106,442	119,993	133,578	154,704	163,208	201,511
Rondônia	3,137	3,845	4,488	4,799	5,400	5,946	6,549	7,780	9,751	11,260	12,884	13,107	15,003	17,888	20,236	23,561
Acre	1,237	1,460	1,555	1,694	1,867	2,154	2,475	2,868	3,305	3,940	4,483	4,835	5,761	6,730	7,386	8,477
Amazonas	10,069	12,495	12,572	13,199	13,934	16,750	18,050	21,791	24,977	30,314	33,352	39,157	42,023	46,823	49,614	59,779
Roraima	1,004	1,188	1,284	1,347	1,570	1,777	2,033	2,313	2,737	2,811	3,179	3,660	4,169	4,889	5,593	6,341
Pará	10,998	13,355	14,312	15,091	16,504	19,050	22,321	25,659	29,755	35,563	39,121	44,370	49,507	58,519	58,402	77,848
Amapá	1,507	1,819	2,030	2,038	2,128	2,357	2,802	3,292	3,434	3,846	4,361	5,260	6,022	6,765	7,404	8,266
Tocantins	1,840	2,166	2,468	2,786	3,016	3,672	4,843	5,607	7,241	8,278	9,061	9,605	11,094	13,091	14,571	17,240
Nordeste	84,970	105,223	116,981	121,901	132,577	146,827	163,465	191,592	217,037	247,043	280,545	311,104	347,797	397,503	437,720	507,502
Maranhão	6,390	8,482	9,249	9,381	10,308	11,909	13,420	15,449	18,483	21,605	25,335	28,620	31,606	38,487	39,855	45,256
Piauí	3,584	4,359	4,733	4,950	5,381	6,063	6,473	7,425	8,777	9,817	11,129	12,788	14,136	16,761	19,033	22,060
Ceará	13,740	17,149	18,538	19,220	20,734	22,607	24,533	28,896	32,565	36,866	40,935	46,303	50,331	60,099	65,704	77,865
Rio Grande do Norte	4,944	6,280	7,102	7,320	8,117	9,120	10,343	12,198	13,515	15,580	17,870	20,555	22,926	25,481	27,905	32,339
Paraíba	5,183	6,434	7,205	7,647	8,397	9,338	10,849	12,434	14,158	15,022	16,869	19,951	22,202	25,697	28,719	31,947
Pernambuco	16,212	19,997	21,989	23,271	24,879	26,959	30,245	35,251	39,308	44,011	49,922	55,493	62,256	70,441	78,428	95,187
Alagoas	4,657	5,369	6,215	6,676	6,935	7,769	8,488	9,812	11,210	12,891	14,139	15,748	17,793	19,477	21,235	24,575
Sergipe	3,833	4,720	5,422	5,597	5,942	6,540	8,019	9,454	10,874	12,167	13,427	15,124	16,896	19,552	19,767	23,932
Bahia	26,427	32,431	36,528	37,838	41,883	46,523	51,096	60,672	68,147	79,083	90,919	96,521	109,652	121,508	137,075	154,340
Sudeste	417,232	492,768	549,850	569,582	620,101	687,777	751,226	837,646	947,748	1,083,975	1,213,863	1,345,513	1,501,185	1,698,590	1,792,049	2,088,221
Minas Gerais	60,930	74,152	82,801	83,924	89,790	100,612	111,315	127,782	148,823	177,325	192,639	214,754	241,293	282,522	287,055	351,381
Espírito Santo	14,059	16,008	17,734	18,394	19,843	23,249	24,334	26,756	31,064	40,217	47,223	52,778	60,340	69,870	66,763	82,122
Rio de Janeiro	78,945	94,684	104,424	114,178	127,219	139,755	152,099	171,372	188,015	222,945	247,018	275,327	296,768	343,182	353,878	407,123
São Paulo	263,298	307,924	344,891	353,085	383,250	424,161	463,478	511,736	579,847	643,487	726,984	802,655	902,784	1,003,016	1,084,353	1,247,596
Sul	114,304	136,899	151,200	158,593	174,556	194,257	217,472	249,626	300,859	337,657	356,211	386,588	442,820	502,052	535,662	622,255
Paraná	40,194	48,199	53,014	57,101	63,389	69,131	76,413	88,407	109,459	122,434	126,677	136,615	161,582	179,270	189,992	217,290
Santa Catarina	24,231	29,892	33,194	33,819	37,151	43,312	48,748	55,732	66,849	77,393	85,316	93,147	104,623	123,283	129,806	152,482
Rio Grande do Sul	49,879	58,807	64,991	67,673	74,016	81,815	92,310	105,487	124,551	137,831	144,218	156,827	176,615	199,499	215,864	252,483

REGIÃO GEOGRÁFICA E UNIDADE DA							PIB A PR	EÇOS CO	RRENTES	(R\$1.000.00	0,00)					
FEDERAÇÃO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Centro-Oeste	59,341	72,749	82,405	88,246	93,348	98,915	110,899	129,649	153,104	176,811	190,178	206,284	235,964	279,015	310,765	350,596
Mato Grosso do Sul	6,428	7,722	8,711	9,272	10,172	11,320	13,151	15,154	19,274	21,105	21,651	24,341	28,121	33,145	36,368	43,514
Mato Grosso	7,319	8,648	10,069	10,567	12,365	14,871	16,310	20,941	27,889	36,961	37,466	35,258	42,687	53,023	57,294	59,600
Goiás	14,461	17,723	19,825	21,120	22,191	26,249	29,914	37,416	42,836	48,021	50,534	57,057	65,210	75,275	85,615	97,576
Distrito Federal	31,133	38,657	43,801	47,287	48,619	46,475	51,523	56,138	63,105	70,724	80,527	89,629	99,946	117,572	131,487	149,906

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), Coordenação de Contas Nacionais (Conac)

A participação do PIB Estadual no âmbito nacional praticamente dobra no período de 1995 a 2010, como revelada na tabela 10, passando de 0,26% para 0,46%. O período caracterizou-se pela realização de grandes obras públicas de infraestrutura nos setores de energia e transporte, mas também pelo crescimento do agronegócio (pecuária e produção de *commodities*, notadamente soja) e, nos últimos anos, o setor de serviços. Em que pese o expressivo crescimento nos últimos 15 anos, o PIB *per capita* do Tocantins representava em 2010, 63,04% do PIB *per capita* brasileiro (15° posição no ranking). Em 1995, esse percentual era de apenas 39,64%, de acordo com a tabela 11.

Tabela 9: Série encadeada do volume do Produto Interno Bruto (PIB), segundo Regiões Geográficas e Unidades da Federação - Brasil- 2002-2010

GRANDES	SÉRIE ENCADEADA DO VOLUME DO PRODUTO INTERNO BRUTO (BASE: 2002 = 100)										
REGIÕES E UNIDADES DA FEDERAÇÃO	2002	2003	2004	2005	2006	2007	2008	2009	2010		
Brasil	100.0	101.1	106.9	110.3	114.7	121.7	127.9	127.5	137.1		
Norte	100.0	106.0	115.0	122.7	128.5	133.4	139.8	139.3	153.2		
Rondônia	100.0	105.6	115.6	120.8	125.1	131.6	135.7	145.6	163.9		

GRANDES		SÉRIE ENC	ADEADA DO	VOLUME DO	O PRODUTO	INTERNO BE	RUTO (BASE:	2002 = 100)	
REGIÕES E UNIDADES DA FEDERAÇÃO	2002	2003	2004	2005	2006	2007	2008	2009	2010
Acre	100.0	103.9	111.8	120.0	126.5	134.7	144.1	145.7	161.6
Amazonas	100.0	104.6	115.4	127.4	130.7	136.6	142.7	139.8	153.7
Roraima	100.0	103.4	109.1	113.9	121.1	124.2	133.7	139.9	153.3
Pará	100.0	106.4	114.1	118.9	127.3	130.2	136.6	132.2	142.8
Amapá	100.0	107.9	116.5	123.9	131.0	137.7	141.8	147.4	159.2
Tocantins	100.0	110.5	119.5	128.4	132.4	138.6	147.0	152.6	174.2
Nordeste	100.0	101.9	108.5	113.5	118.9	124.6	131.5	132.8	142.4
Maranhão	100.0	104.4	113.8	122.1	128.2	139.8	146.0	143.4	156.0
Piauí	100.0	105.4	112.0	117.1	124.2	126.7	137.9	146.4	152.5
Ceará	100.0	101.5	106.7	109.7	118.5	122.5	132.9	132.9	143.5
Rio Grande do Norte	100.0	101.5	105.0	109.2	114.4	117.4	122.7	124.6	130.9
Paraíba	100.0	105.3	108.2	112.5	120.1	122.7	129.5	131.6	145.1
Pernambuco	100.0	99.4	103.4	107.8	113.3	119.4	125.7	129.2	139.2
Alagoas	100.0	99.4	103.9	108.9	113.7	118.3	123.2	125.7	134.3
Sergipe	100.0	102.7	109.5	115.7	120.4	127.9	131.2	137.1	144.4
Bahia	100.0	102.2	112.0	117.4	120.5	126.9	133.5	132.7	141.5
Sudeste	100.0	99.8	105.3	109.0	113.4	120.6	127.3	126.0	135.6
Minas Gerais	100.0	101.4	107.3	111.6	115.9	122.4	128.8	123.7	134.7
Espírito Santo	100.0	101.4	107.1	111.6	120.2	129.7	139.7	130.3	148.3
Rio de Janeiro	100.0	98.9	102.1	105.1	109.3	113.2	117.9	120.2	125.6
São Paulo	100.0	99.6	105.7	109.4	113.8	122.2	129.4	128.4	138.6
Sul	100.0	102.5	107.5	106.7	110.1	117.2	121.2	120.4	129.5
Paraná	100.0	104.5	109.7	109.7	111.9	119.5	124.6	122.9	135.2

GRANDES		SÉRIE ENCADEADA DO VOLUME DO PRODUTO INTERNO BRUTO (BASE: 2002 = 100)										
REGIÕES E UNIDADES DA FEDERAÇÃO	2002	2003	2004	2005	2006	2007	2008	2009	2010			
Santa Catarina	100.0	101.0	108.7	110.4	113.2	120.0	123.5	123.5	130.1			
Rio Grande do Sul	100.0	101.6	105.0	102.1	106.8	113.8	116.9	116.5	124.3			
Centro-Oeste	100.0	103.5	109.9	115.1	118.3	126.4	134.2	137.5	145.9			
Mato Grosso do Sul	100.0	107.6	106.2	109.7	115.4	123.5	131.3	131.9	146.4			
Mato Grosso	100.0	104.2	121.0	127.3	121.5	135.3	146.8	150.4	155.8			
Goiás	100.0	104.2	109.7	114.3	117.8	124.3	134.2	135.4	147.3			
Distrito Federal	100.0	101.5	106.6	112.1	118.2	125.1	129.9	135.1	140.9			

Fonte: IBGE, em parceria com os Órgãos Estaduais de Estatística, Secretarias Estaduais de Governo e Superintendência da Zona Franca de Manaus (SUFRAMA).

Tabela 10: Participação no Produto Interno Bruto (PIB) Nacional, segundo Regiões Geográficas e Unidades da Federação - 2002-2010

REGIÃO GEOGRÁFICA E		PARTICIPAÇÃO (%)														
UNIDADE DA FEDERAÇÃO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Brasil	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Norte	4.22	4.30	4.12	4.18	4.17	4.38	4.54	4.69	4.78	4.95	4.96	5.06	5.02	5.10	5.04	5.34
Rondônia	0.44	0.46	0.48	0.49	0.51	0.50	0.50	0.53	0.57	0.58	0.60	0.55	0.56	0.59	0.62	0.62
Acre	0.18	0.17	0.17	0.17	0.18	0.18	0.19	0.19	0.19	0.20	0.21	0.20	0.22	0.22	0.23	0.22
Amazonas	1.43	1.48	1.34	1.35	1.31	1.42	1.39	1.47	1.47	1.56	1.55	1.65	1.58	1.54	1.53	1.59
Roraima	0.14	0.14	0.14	0.14	0.15	0.15	0.16	0.16	0.16	0.14	0.15	0.15	0.16	0.16	0.17	0.17
Pará	1.56	1.58	1.52	1.54	1.55	1.62	1.71	1.74	1.75	1.83	1.82	1.87	1.86	1.93	1.80	2.06

REGIÃO GEOGRÁFICA E		PARTICIPAÇÃO (%)														
UNIDADE DA FEDERAÇÃO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Amapá	0.21	0.22	0.22	0.21	0.20	0.20	0.22	0.22	0.20	0.20	0.20	0.22	0.23	0.22	0.23	0.22
Tocantins	0.26	0.26	0.26	0.28	0.28	0.31	0.37	0.38	0.43	0.43	0.42	0.41	0.42	0.43	0.45	0.46
Nordeste	12.04	12.47	12.46	12.45	12.45	12.45	12.55	12.96	12.77	12.72	13.07	13.13	13.07	13.11	13.51	13.46
Maranhão	0.91	1.01	0.98	0.96	0.97	1.01	1.03	1.05	1.09	1.11	1.18	1.21	1.19	1.27	1.23	1.20
Piauí	0.51	0.52	0.50	0.51	0.51	0.51	0.50	0.50	0.52	0.51	0.52	0.54	0.53	0.55	0.59	0.59
Ceará	1.95	2.03	1.97	1.96	1.95	1.92	1.88	1.96	1.92	1.90	1.91	1.95	1.89	1.98	2.03	2.07
Rio Grande do Norte	0.70	0.74	0.76	0.75	0.76	0.77	0.79	0.83	0.80	0.80	0.83	0.87	0.86	0.84	0.86	0.86
Paraíba	0.73	0.76	0.77	0.78	0.79	0.79	0.83	0.84	0.83	0.77	0.79	0.84	0.83	0.85	0.89	0.85
Pernambuco	2.30	2.37	2.34	2.38	2.34	2.29	2.32	2.39	2.31	2.27	2.32	2.34	2.34	2.32	2.42	2.52
Alagoas	0.66	0.64	0.66	0.68	0.65	0.66	0.65	0.66	0.66	0.66	0.66	0.66	0.67	0.64	0.66	0.65
Sergipe	0.54	0.56	0.58	0.57	0.56	0.55	0.62	0.64	0.64	0.63	0.63	0.64	0.63	0.64	0.61	0.63
Bahia	3.75	3.84	3.89	3.86	3.93	3.94	3.92	4.11	4.01	4.07	4.23	4.07	4.12	4.01	4.23	4.09
Sudeste	59.13	58.39	58.55	58.16	58.23	58.31	57.69	56.68	55.75	55.83	56.53	56.79	56.41	56.02	55.32	55.39
Minas Gerais	8.63	8.79	8.82	8.57	8.43	8.53	8.55	8.65	8.75	9.13	8.97	9.06	9.07	9.32	8.86	9.32
Espírito Santo	1.99	1.90	1.89	1.88	1.86	1.97	1.87	1.81	1.83	2.07	2.20	2.23	2.27	2.30	2.06	2.18
Rio de Janeiro	11.19	11.22	11.12	11.66	11.95	11.85	11.68	11.60	11.06	11.48	11.50	11.62	11.15	11.32	10.92	10.80
São Paulo	37.31	36.49	36.72	36.06	35.99	35.96	35.59	34.63	34.11	33.14	33.86	33.87	33.92	33.08	33.47	33.09
Sul	16.20	16.22	16.10	16.19	16.39	16.47	16.70	16.89	17.70	17.39	16.59	16.32	16.64	16.56	16.54	16.51
Paraná	5.70	5.71	5.64	5.83	5.95	5.86	5.87	5.98	6.44	6.31	5.90	5.77	6.07	5.91	5.87	5.76
Santa Catarina	3.43	3.54	3.53	3.45	3.49	3.67	3.74	3.77	3.93	3.99	3.97	3.93	3.93	4.07	4.01	4.04
Rio Grande do Sul	7.07	6.97	6.92	6.91	6.95	6.94	7.09	7.14	7.33	7.10	6.72	6.62	6.64	6.58	6.66	6.70
Centro-Oeste	8.41	8.62	8.77	9.01	8.77	8.39	8.52	8.77	9.01	9.11	8.86	8.71	8.87	9.20	9.59	9.30
Mato Grosso do Sul	0.91	0.91	0.93	0.95	0.96	0.96	1.01	1.03	1.13	1.09	1.01	1.03	1.06	1.09	1.12	1.15
Mato Grosso	1.04	1.02	1.07	1.08	1.16	1.26	1.25	1.42	1.64	1.90	1.74	1.49	1.60	1.75	1.77	1.58
Goiás	2.05	2.10	2.11	2.16	2.08	2.23	2.30	2.53	2.52	2.47	2.35	2.41	2.45	2.48	2.64	2.59
Distrito Federal	4.41	4.58	4.66	4.83	4.57	3.94	3.96	3.80	3.71	3.64	3.75	3.78	3.76	3.88	4.06	3.98

Fonte: IBGE, em parceria com os Órgãos Estaduais de Estatística, Secretarias Estaduais de Governo e Superintendência da Zona Franca de Manaus - SUFRAMA.

Tabela 11: Produto Interno Bruto (PIB) *PER* CAPITA, segundo o País, Regiões Geográficas e Unidades da Federação - 2002-2010

REGIÃO		PIB PER CAPITA (R\$1,00)														
GEOGRÁFICA E UNIDADE DA FEDERAÇÃO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Brasil	4,437.54	5,233.99	5,745.05	5,910.38	6,310.98	6,886.28	7,491.20	8,378.10	9,497.69	10,692.19	11,658.10	12,686.60	14,464.73	15,989.77	16,917.66	19,766.33
Norte	2,576.38	3,067.12	3,192.86	3,306.24	3,478.10	3,951.12	4,407.20	5,049.89	5,779.65	6,679.93	7,241.49	7,987.81	9,134.62	10,216.43	10,625.79	12,701.05
Rondônia	2,481.56	2,985.44	3,421.16	3,593.03	3,945.38	4,260.11	4,601.73	5,362.64	6,594.34	7,208.59	8,395.74	8,389.21	10,319.98	11,976.71	13,455.56	15,098.13
Acre	2,512.25	2,884.13	2,992.58	3,181.81	3,334.02	3,738.63	4,176.09	4,707.39	5,277.78	6,251.21	6,693.56	7,040.86	8,789.49	9,896.16	10,687.45	11,567.41
Amazonas	4,054.75	4,894.41	4,794.45	4,914.53	5,027.09	5,879.61	6,168.35	7,252.58	8,099.74	9,657.97	10,318.30	11,826.21	13,042.83	14,014.13	14,620.94	17,173.33
Roraima	3,656.44	4,165.59	4,345.51	4,412.44	4,911.77	5,362.58	5,925.31	6,513.12	7,454.93	7,360.85	8,124.58	9,074.35	10,534.08	11,844.73	13,270.47	14,051.91
Pará	1,959.15	2,328.62	2,443.83	2,527.89	2,689.69	3,037.02	3,482.21	3,917.96	4,448.01	5,191.52	5,612.32	6,240.05	7,006.81	7,992.71	7,859.19	10,259.20
Amapá	3,870.55	4,464.78	4,768.52	4,596.50	4,542.51	4,818.45	5,494.66	6,199.64	6,219.90	7,026.17	7,334.93	8,542.94	10,253.74	11,032.67	11,816.60	12,361.45
Tocantins	1,758.96	2,025.06	2,259.13	2,499.60	2,630.69	3,131.69	4,040.43	4,576.41	5,783.53	6,555.94	6,939.37	7,208.34	8,920.73	10,223.15	11,277.70	12,461.67
Nordeste	1,876.56	2,297.99	2,526.78	2,604.54	2,791.14	3,054.09	3,359.64	3,890.86	4,355.28	4,898.99	5,498.83	6,028.09	6,748.81	7,487.55	8,167.75	9,561.41
Maranhão	1,202.98	1,576.14	1,696.73	1,698.63	1,834.60	2,089.97	2,322.56	2,636.93	3,111.63	3,587.90	4,150.95	4,627.71	5,165.23	6,103.66	6,259.43	6,888.60
Piauí	1,317.40	1,587.31	1,707.53	1,770.19	1,900.49	2,119.71	2,240.39	2,544.34	2,977.51	3,297.24	3,701.24	4,211.87	4,661.56	5,372.56	6,051.10	7,072.80
Ceará	1,982.75	2,438.44	2,597.87	2,654.60	2,808.50	3,014.49	3,220.68	3,735.16	4,145.07	4,621.82	5,055.43	5,634.97	6,149.03	7,111.85	7,686.62	9,216.96
Rio Grande do Norte	1,896.89	2,377.65	2,653.95	2,699.13	2,940.56	3,256.90	3,641.88	4,234.49	4,626.36	5,259.92	5,950.38	6,753.04	7,607.01	8,202.81	8,893.90	10,207.56
Paraíba	1,557.03	1,919.49	2,134.73	2,248.82	2,446.21	2,699.09	3,111.69	3,538.86	3,998.32	4,209.90	4,691.09	5,506.52	6,097.04	6,865.98	7,617.71	8,481.14
Pernambuco	2,147.90	2,622.77	2,855.31	2,992.31	3,156.20	3,382.80	3,753.89	4,327.78	4,773.53	5,287.29	5,933.46	6,526.63	7,336.78	8,064.95	8,901.93	10,821.55
Alagoas	1,739.15	1,983.18	2,270.51	2,412.49	2,469.19	2,733.00	2,950.63	3,370.53	3,804.89	4,324.35	4,688.25	5,162.19	5,858.37	6,227.50	6,728.21	7,874.21
Sergipe	2,327.37	2,817.36	3,182.53	3,231.58	3,354.98	3,626.37	4,368.12	5,059.88	5,718.37	6,289.39	6,823.61	7,559.35	8,711.70	9,778.96	9,787.25	11,572.44
Bahia	2,112.49	2,568.27	2,866.16	2,943.44	3,219.05	3,539.86	3,848.97	4,524.67	5,031.40	5,780.06	6,581.04	6,918.97	7,787.40	8,378.41	9,364.71	11,007.47
Sudeste	6,148.59	7,162.88	7,885.64	8,058.44	8,615.60	9,416.70	10,136.84	11,140.34	12,424.15	14,009.42	15,468.74	16,911.70	19,277.26	21,182.68	22,147.22	25,987.86
Minas Gerais	3,609.56	4,339.35	4,787.43	4,793.77	5,046.02	5,580.13	6,093.38	6,903.95	7,936.72	9,335.97	10,013.76	11,024.70	12,519.40	14,232.81	14,328.62	17,931.89
Espírito Santo	4,907.13	5,494.52	5,987.86	6,114.40	6,453.56	7,429.19	7,641.71	8,258.38	9,424.79	11,997.94	13,854.91	15,234.76	18,002.92	20,230.85	19,145.17	23,378.74
Rio de Janeiro	5,786.58	6,863.37	7,486.75	8,093.20	8,884.29	9,642.44	10,368.75	11,543.23	12,513.50	14,663.82	16,057.40	17,692.59	19,245.08	21,621.36	22,102.98	25,455.38
São Paulo	7,638.43	8,798.47	9,708.95	9,792.10	10,418.42	11,345.91	12,200.97	13,258.84	14,787.99	16,157.79	17,975.61	19,550.37	22,667.25	24,456.86	26,202.22	30,243.17
Sul	4,819.98	5,702.98	6,223.79	6,453.53	6,989.88	7,678.08	8,485.08	9,614.67	11,439.76	12,676.91	13,205.97	14,156.15	16,564.00	18,257.79	19,324.64	22,722.62
Paraná	4,444.74	5,266.71	5,725.02	6,097.93	6,663.44	7,174.54	7,830.09	8,944.80	10,935.46	12,079.83	12,344.44	13,151.98	15,711.20	16,927.98	17,779.11	20,813.98
Santa Catarina	4,871.11	5,914.96	6,467.54	6,490.41	6,984.02	8,007.32	8,864.66	9,969.47	11,764.48	13,403.29	14,542.79	15,633.20	17,834.00	20,368.64	21,214.53	24,398.42
Rio Grande do Sul	5,143.66	6,001.09	6,563.90	6,767.29	7,299.19	7,977.52	8,900.13	10,056.79	11,741.68	12,850.07	13,298.02	14,304.83	16,688.74	18,378.17	19,778.39	23,606.36

REGIÃO GEOGRÁFICA E	PIB PER CAPITA (R\$1,00)															
UNIDADE DA FEDERAÇÃO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Centro-Oeste	5,598.30	6,727.04	7,472.23	7,850.12	8,091.41	8,397.11	9,223.04	10,565.26	12,228.01	13,845.69	14,605.73	15,545.74	17,844.46	20,372.10	22,364.63	24,952.88
Mato Grosso do Sul	3,316.49	3,925.89	4,364.98	4,579.50	4,927.16	5,397.72	6,173.82	7,004.24	8,772.33	9,461.22	9,561.12	10,592.44	12,411.18	14,188.41	15,406.96	17,765.68
Mato Grosso	3,207.93	3,714.34	4,240.17	4,368.39	4,980.35	5,865.59	6,302.10	7,928.05	10,347.23	13,444.59	13,365.06	12,340.79	14,953.58	17,927.00	19,087.30	19,644.09
Goiás	3,183.66	3,821.04	4,188.12	4,375.36	4,475.30	5,180.49	5,779.57	7,078.40	7,936.91	8,718.01	8,992.02	9,956.30	11,547.68	12,878.52	14,446.68	16,251.70
Distrito Federal	16,940.18	20,549.57	22,761.56	23,996.05	23,941.42	22,340.94	24,188.61	25,746.57	28,282.45	30,991.50	34,514.74	37,599.28	40,696.08	45,977.59	50,438.46	58,489.46

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), Coordenação de Contas Nacionais (Conac)

Os dez maiores PIB´s dos municípios do Tocantins em 2010, de acordo com o IBGE (2012), tabela 12, são: Palmas, Araguaína, Gurupi, Porto Nacional, Miracema do Tocantins, Paraíso do Tocantins, Peixe, Lagoa da Confusão, Guaraí e Formoso do Araguaia, que respondiam por 58,25%% do PIB estadual. É mister destacar que os municípios de Araguaína, Gurupi, Porto Nacional, Lagoa da Confusão, Guaraí e Formoso do Araguaia são importantes municípios da agropecuária tocantinense.

Tabela 12: Produto Interno Bruto a preços correntes municipais (2006-2010)

GRANDES REGIÕES,		PRODUTO INTERNO BRUTO										
UNIDADES DA FEDERAÇÃO		A PREÇO	S CORRENTE	ES (1 000 R\$)								
E MUNICÍPIOS	2006	2007	2008	2009	2010 (1)							
Tocantins	9 604 690	11 094 063	13 090 266	14 571 366	17 240 135							
Palmas	1,933,480	2,258,905	2,613,946	2,964,944	3,927,446							
Araguaína	1,172,943	1,258,661	1,449,014	1,584,019	1,922,814							
Gurupi	742,107	750,207	850,307	935,476	1,102,899							
Porto Nacional	314,190	346,812	443,389	486,819	670,913							
Miracema do Tocantins	296,852	414,799	526,073	558,255	595,154							
Paraíso do Tocantins	358,268	422,206	421,103	495,760	583,632							
Peixe	236,791	269,280	276,094	277,202	334,007							
Lagoa da Confusão	116,223	155,896	243,080	263,605	303,010							
Guaraí	142,213	184,495	240,567	285,671	302,754							
Formoso do Araguaia	162,677	187,813	213,205	252,103	300,487							
Participação (%) PIB	57.01%	56.33%	55.59%	55.61%	58.25%							

Fonte: IBGE, em parceria com os Órgãos Estaduais de Estatística, Secretarias Estaduais de Governo e Superintendência da Zona Franca de Manaus – SUFRAMA, 2012.

Ao analisarmos o desempenho do PIB dos Estados brasileiros e das Macrorregiões nos últimos 15 anos, percebemos que não existem mudanças significativas das suas participações relativas no PIB do país (ver gráfico 1), o que nos leva a considerar que os Estados e as Macrorregiões crescem tendencialmente às taxas nacionais e a ampliação da sua participação estão relacionadas à exploração de suas vantagens comparativas. Os estados que ampliaram sua participação de forma mais expressiva nesses últimos anos foram os estados produtores de *commodities* agrícolas e/ou minerais, que conseguiram agregar valor à produção, com processo de agroindustrialização.

⁽¹⁾ Dados sujeitos a revisão.

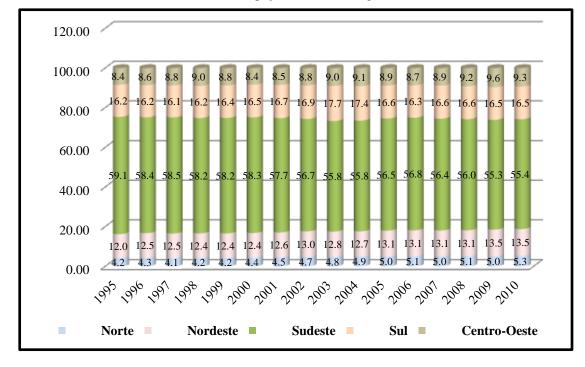


Gráfico 1: Participação do PIB das Regiões (%) 1995-2010

Fonte: IBGE, Contas Regionais, 2010

A composição do Valor Adicionado Bruto (VAB) do Tocantins no período de 2006 a 2010 não teve alterações significativas. A agropecuária mantém uma expressiva participação, com 18% (4ª maior participação do setor na composição do VAB estadual), se comparada a participação percentual do setor no conjunto do país, com 5,3%; em Estados em que a atividade agropecuária é tradicional, como no Paraná, Rio Grande do Sul e Santa Catarina. Esses percentuais são respectivamente, 8,5%, 8,7% e 6,7%; enquanto em Estados com a forte expansão agropecuária nas últimas décadas, principalmente na região Centro-Oeste, como Mato Grosso do Sul, Mato Grosso (maior participação do setor no país na composição do VAB estadual) e Goiás, a agropecuária representava respectivamente 15,5%, 22,1% e 14,1% do VAB, no ano de 2010 (IBGE, 2012). Ainda no Tocantins, o setor industrial concentrava 25,4% do VAB, sendo basicamente composto pela construção civil (14,7%), e os serviços de utilidade pública com 6,6%. A indústria de transformação representa apenas 3,6% e sem modificações relevantes no período. O setor público continua a ter papel crucial na economia estadual com 25,4% do VAB em 2010, revelando alta dependência da economia local ao setor, como podemos verificar na tabela 13.

Tabela 13: Composição do Valor Adicionado Bruto, Tocantins - 2006-2010

ATIVIDADE	PARTICIPAÇÃO DO VALOR						
			ADO BR				
	2006	2007	2008	2009	2010		
TOTAL	100	100	100	100	100		
Agropecuária	18,5	17,8	20,8	20,6	18,1		
Indústria	24,0	24,1	23,6	22,8	25,4		
Indústria extrativa	0,3	0,3	0,4	0,4	0,4		
Indústrias de transformação	3,8	3,3	3,2	2,5	3,6		
Construção Civil	14,3	13,6	13,3	14,0	14,7		
Produção e distribuição de eletricidade e gás, água, esgoto e limpeza	5,7	7,0	6,7	6,7	6,6		
urbana							
Serviços	57,4	58,1	55,6	56,6	56,5		
Comércio	11,3	13,0	13,4	12,9	12,2		
Transportes, armazenagem e correio	2,6	2,1	2,4	2,2	2,1		
Serviços de informação	2,0	1,8	1,5	1,5	1,3		
Intermediação financeira, seguros e previdência complementar e	3,0	3,0	2,5	2,7	2,9		
serviços relacionados							
Atividades imobiliárias e aluguéis	5,8	5,7	4,9	5,0	4,5		
Administração, saúde e educação públicas e seguridade social	24,6	24,5	23,8	24,4	25,4		
Outros serviços	8,1	8,0	7,1	7,9	8,1		

Fonte: IBGE, Contas Regionais, 2012

O desempenho das exportações, no período de 1995 a 2012 (tabela 14 e gráfico 2) elevou-se de forma expressiva, obtendo sucessivos superávits comerciais, ainda que concentrada em basicamente dois produtos (soja e carnes e seus derivados) respondendo por mais de 94% da sua pauta em 2012. A participação do Estado nas exportações nacionais é pouco expressiva chegando apenas a 0,27% do total, abaixo da nossa participação do PIB brasileiro (0,43%), mas, considerando que em 1995 sua contribuição era estatisticamente desprezível (0,001%) e em 2002 era de apenas 0,03%, o cenário se apresenta favorável. Destacamos que o salto da participação estadual nas exportações nacionais coaduna com o período da rápida expansão da soja no Estado. Em 2002 a produção era de 244 mil toneladas para, em 2005, ascender a 905 mil toneladas e em 2012, a 1,19 milhões de toneladas.

Tabela 14: Balanca Comercial, Tocantins 1995-2012 (US\$ 1.000 FOB)

	Tubeta 14. Balanga Comercial, Tocalitins 1773 2012 (CB\$\psi\$ 1.000 1 CB)								
	VALOR		VALOR		SALDO	EXPORTAÇÕES			
ANO	EXPORTAÇÃO	VAR%	IMPORTADO	VAR%	COMERCIAL	TO-BR(%)			
1995	235	-93,69	8,828		-8,593	0.001			
1996	1,416	502,55	2,394	-72,88	-978	0.001			
1997	9,797	591,88	23,121	865,79	-13,324	0.02			
1998	13,419	36,97	37,512	62,24	-24,093	0.03			
1999	8,024	-40,20	22,464	-40,12	-14,439	0.02			

_							
	ANO	VALOR EXPORTAÇÃO	VAR%	VALOR IMPORTADO	VAR%	SALDO COMERCIAL	EXPORTAÇÕES TO-BR(%)
	2000	8,311	3,57	9,006	-59,91	-695	0.02
	2001	3,919	-52,85	2,519	-72,03	1,4	0.01
_	2002	16,209	313,58	24,048	854,82	-7,839	0.03
	2003	45,581	181,22	19,321	-19,66	26,26	0.06
	2004	116,466	155,51	32,886	70,21	83,58	0.12
	2005	158,736	36,29	14,252	-56,66	144,483	0.13
_	2006	203,887	28,44	24,614	72,70	179,272	0.15
	2007	154,982	-23,99	72,968	196,45	82,014	0.10
	2008	297,706	92,09	143,646	96,86	154,059	0.15
-	2009	280,218	-5,87	127,574	-11,19	152,644	0.18
_	2010	343,992	22,76	239,886	88,04	104,106	0.17
	2011	486,316	41,37	162,306	-32,34	324,01	0.19
	2012	644,145	32,45	127,954	-21,16	516,191	0.27

Fonte: MDIC, Ministério do Desenvolvimento, Indústria e Comércio Exterior, 1995-2012

100% 80% 9,006 60% 2,519 **516,**191 24,04**\$**9,321 32,886 239,886 72,968 2,394 162,306 127,954 23,121 37,51<u>2</u>2,464 14,2524,614 143,646 40% 8,828 203,887 20% 297,706 8,3113,919 45,581 9,797_{13,418,024} 16,209 154,982 158,736 280,218 0% 486,316 -20% -40% -60% VALOR SALDO COMERCIAL VALOR **EXPORTAÇÃO IMPORTADO**

Gráfico 2: Valor das exportações, importações e saldo comercial, Tocantins, 1995 – 2012 (US\$ 1.000 FOB)

Fonte: MDIC, Ministério do Desenvolvimento, Indústria e Comércio Exterior, 1995-2012

1.4.2.3 A agropecuária no Estado do Tocantins

Até constituir-se como Estado, o Tocantins recebeu a denominação de "norte goiano", em função das regiões auríferas das Minas dos Goyases e da oposição do norte ao centro-sul de Goiás (CAVALCANTE, 2002) e, posteriormente, até sua criação, caracterizado pela pobreza e isolamento econômico. Segundo Palacín (1989, p. 11) "o norte de Goiás deixou muito cedo de ser um denotativo meramente geográfico para carregar um peso de oposição política, primeiro, todo um quadro de involução social e atraso econômico".

À promulgação da Lei de Terras (lei nº 601 de 18 de setembro de 1850), influiu sobremaneira, posteriormente, na estrutura agrária do Tocantins, pois, sendo o norte goiano uma região distante e pauperizada, a legalização mostrou-se dispendiosa e morosa, acarretando uma estrutura agrária concentrada e de posse. Segundo Coelho Júnior, a lei de 1900 reforça a concentração fundiária ao estabelecer "o arrendamento em condições extremamente favoráveis aos grandes proprietários rurais e reconheceu as posses feitas à revelia da lei de 1850" (COELHO JÚNIOR, 2005, p. 20).

O então norte goiano inicia a expansão da sua fronteira em 1865, com a criação da Companhia de Navegação Araguaia-Tocantins, por Couto Magalhães, no entanto, sem sucesso, mantendo o isolamento da região. Essa situação perdurou até o primeiro governo do Presidente Getúlio Vargas, na década de 1930, o qual iniciou o processo de integração da economia nacional, "a ideologia da Marcha para Oeste tornou-se a principal bandeira da ocupação e colonização do espaço regional" (BORGES, 2000, p. 71) e, as construções das primeiras rodovias tinham como estratégia a integração das regiões interioranas do país e a ocupação da região "Oeste representava, na visão oficial, um mundo em perspectiva. Era uma realidade geográfica a incorporar-se no quadro da civilização moderna" (BORGES, 2000, p. 73).

A rodovia Belém-Brasília, parte integrante da estratégia desenvolvimentista e de integração nacional do Presidente Juscelino Kubitscheck, construída parcialmente e inaugurada em 1°. de fevereiro de 1959, além de incluir fisicamente a região do norte goiano, proporcionou o avanço da fronteira agrícola e permitiu quebrar, segundo Borges,

fronteira agrícola e grandes projetos agropecuários e madeireiros começaram a ser instalados na região (BORGES, 2000, p. 88).

O fortalecimento econômico regional alimentou "o movimento separatista nortense que culminou com a criação do Estado do Tocantins no final da década de 1980" (BORGES, 2000, p. 65).

Novos núcleos urbanos surgiram ao longo da rodovia, com destaque para Araguaína, Gurupi, Paraíso do Tocantins, Miranorte, Colinas do Tocantins e Guaraí, sendo hoje, as principais cidades do Tocantins, bem como, a movimentação de matérias primas e produtos industrializados. Outro fator importante, em função da implementação da Belém-Brasília foi a preponderância do latifúndio, decorrente do uso da força na determinação da sua posse e pela ausência efetiva de uma política de ocupação das suas margens, notadamente, as destinados aos colonos. Mormente a concentração fundiária também foi favorecida, na região Norte, pela política de crédito e incentivos fiscais adotados pelos governos militares.

Segundo Hoffmann & Ney (2008, p. 23), o índice de Gini evidencia a alta concentração fundiária nos Estados brasileiros. No caso do Tocantins, os estabelecimentos de 1.000 ha e mais, alcançavam 5,05%; no Brasil, 0,91% em 2006. O índice de Gini no Estado, em 1995/96, era 0,726; no país, 0,856. Em 2006 no Tocantins, de 0,792 e no Brasil, 0,872; configurando tendência a manter-se a alta concentração da propriedade rural no Estado ou mesmo aumentála (Censo Agropecuário, 2006, p. 109).

A partir dos anos 70 e 80 do século XX, os investimentos governamentais foram realizados com a execução de Programas Especiais, como o de Desenvolvimento dos Cerrados (POLOCENTRO), Grande Carajás, Programa Nacional de Aproveitamento Racional de Várzeas (PROVÁRZEAS) e o Programa de Financiamento para Equipamentos de Irrigação (PROFIR), incentivos fiscais e créditos especiais a baixos juros da Superintendência de Desenvolvimento da Amazônia (SUDAM) e do Programa de Redistribuição de Terras (PROTERRA). Os produtos incentivados estavam relacionados à atividade industrial, a partir do cultivo de *commodities* em larga escala (soja, arroz e milho) e a política econômica nacional de culturas voltadas para exportação, desta forma, alicerçando a implantação da empresa agropecuária articulada as firmas nacionais e internacionais. (OLIVEIRA, 1998, p. 43).

O Projeto Rio Formoso, no município de Formoso do Araguaia, possuía como ideia original de intervenção estatal na região do Araguaia-Tocantins "a expansão da fronteira agrícola do estado com a ocupação racional da bacia do Médio-Araguaia, que poderia

apresentar potencial de área agricultável em torno de 2,5 milhões de hectares", (BARBOSA, 1996, p. 29). Implantado em 1979, com 36 mil hectares, divididos em subáreas destinadas à irrigação, inicialmente destinado ao cultivo de arroz, fora financiado com investimentos governamentais, da desapropriação às obras hidráulicas e posterior comercialização dos lotes agrícolas, tornando a área uma das maiores produtoras de arroz. Para Barbosa,

O Projeto Rio Formoso acabou tornando-se uma ilha, cercada de benefícios públicos, [...] tem-se no Projeto o modelo da política adotada no Brasil desde a época do Império: a política do favor ou do clientelismo como fundamento do Estado brasileiro, a qual não distingue o público do privado (BARBOSA, 1996, p. 33).

O Projeto de Desenvolvimento Integrado da Bacia do Araguaia-Tocantins (PRODIAT), iniciado pelo Ministério do Interior em cooperação técnica com a Organização dos Estados Americanos (OEA) teve início no primeiro quartel da década de 1980, com os estudos socioeconômicos e ambientais, continuados somente no início dos anos de 1990 com o desenvolvimento do Plano Estadual de Agricultura Irrigada. Os estudos demonstraram viabilidade e respaldaram a implantação do Projeto de Irrigação Javaés, composto pelos subprojetos: Riozinho, Pium, Urubu, Xavante e Formoso, com um total de 329 mil hectares de área irrigada, com o cultivo de duas safras anuais (safra e entressafra), cujas culturas principais são o arroz, a soja (produção de semente), milho, feijão e melancia (NOLÊTO JÚNIOR, 2005, p. 47-48).

O Programa de Cooperação Nipo-brasileira para o Desenvolvimento dos Cerrados (PRODECER), iniciado em 1978, representou um marco da cooperação entre o Brasil e o Japão, em função da ocupação agrícola em larga escala em uma vasta área do cerrado brasileiro. O Projeto dividiu-se entre três etapas de ocupação dos cerrados: a primeira em Minas Gerais (Iraí de Minas, Coromandel e Paracatu), com a incorporação de 70 mil hectares e US\$ 50 milhões de investimentos; a segunda etapa, no ano de 1987 em Goiás, Mato Grosso, Mato Grosso do Sul e Bahia, acréscimo de 200 mil hectares e aporte financeiro dos nipônicos de US\$ 350 milhões e a terceira fase, a partir de 1996, em Tocantins (Pedro Afonso) e Maranhão (Balsas), com outros 80 mil hectares e US\$ 138 milhões investidos, cujas características principais foram o crédito supervisionado, despesas operacionais e assistência técnica (DINIZ, 2007, p.118).

Em Pedro Afonso/TO, o PRODECER III incorporou uma área de 40 mil hectares, realizou investimentos da ordem de US\$ 69 milhões e 41 famílias foram beneficiadas (RODRIGUES, VASCONCELOS e BARBIERO, 2009, p. 304). Segundo Rodrigues, Vasconcelos e Barbiero, o "Programa trouxe grandes avanços à vida econômica de Pedro Afonso" e, por conseguinte, toda mesorregião oriental do Estado.

Os principais projetos agrícolas do Tocantins, na atualidade, estão alicerçados fortemente no investimento público, principalmente do Governo Federal. O Projeto de Irrigação Sampaio, na região do Bico do Papagaio, iniciou em 2000 com previsão de conclusão em 2013. Contempla área irrigada de aproximadamente 1 mil hectares, investimentos que ultrapassaram R\$ 107 milhões. Inicialmente destinado à fruticultura, foi reorientado pelo governo estadual para a produção de leite.

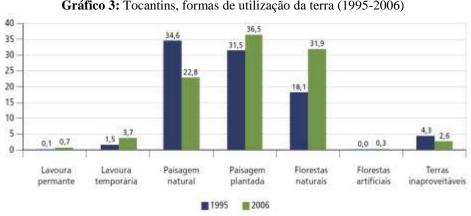
O Projeto de Irrigação Manuel Alves, microrregião de Dianópolis, configura-se como um conjunto de infraestrutura de barragens, sistema de captação, distribuição e drenagem d'água, cujas obras de infraestrutura para irrigação começaram em 2001 e foram concluídas em 2012, investimentos de R\$ 250 milhões, área de 5 mil hectares e potencial para 20 mil hectares, uso múltiplo: irrigação, geração de energia, piscicultura, lazer e paisagismo, mas, sobretudo, destinado à fruticultura e pequenos produtores (SEPLAN, 2012, p. 8).

O Projeto de Fruticultura Irrigada São João, localizado na microrregião de Porto Nacional, tem relação direta com o reservatório da Usina Hidrelétrica (UHE) Luís Eduardo Magalhães, em função da fonte hídrica e porque parte dos seus produtores são de famílias impactadas com o enchimento do reservatório, as quais foram assentadas ou tiveram suas terras permutadas por lotes na área do Projeto. As atividades iniciaram parcialmente em 2011, os investimentos no Projeto são de R\$ 170 milhões, 3.583 hectares de área, 361 lotes destinados aos pequenos produtores e pequenos empresários rurais. A produção concentra-se basicamente em hortifrutigranjeiros e fruticultura (SEPLAN, 2012, p. 2).

O Projeto Gurita, foi constituído com investimentos de R\$ 4,2 milhões, provenientes dos governos estadual e federal, inicialmente destinados à pesquisa agrícola, área irrigada de 200 hectares e sequeiro 400 hectares, localizado na microrregião do Jalapão, no município de Itapiratins. Atualmente concedido à iniciativa privada por 20 anos para operação e manutenção da área irrigada e de sequeiro, sua produção será destinada ao cultivo da uva, alho, cebola e batatinha.

A produção pecuária, desde o século XVIII, configurou-se como uma das atividades mais importantes do Estado do Tocantins desde o norte goiano, como descreve Estevam

O norte de Goiás destoava do sul com relação à modalidade produtiva. Nos julgados do sul, em 1796, haviam 1.189 sítios de lavoura e nos julgados do norte apenas 458. Já em 1828, o sul apresentava 1.476 sítios e o norte 910 totalizando as mencionados 2.380 roças. Com relação à pecuária a situação foi oposta: nos julgados do sul haviam em 1796, apenas 121 fazendas de gado contra 401 fazendas no norte. Em 1828, no sul, haviam 156 fazendas e, no norte, 546 estabelecimentos. Sendo as jazidas auríferas do norte menos expressivas, o declínio se dera mais rapidamente naquela fração setentrional e a pecuária extensiva fora precoce naqueles recantos. O ouro do norte da capitania nunca fora abundante: desde 1754 a produção goiana nortista não mais excedera sequer a metade da extração aurífera do centrosul. Por esta razão, o pastoreio foi mais característico do norte de Goiás e as fazendas do sul, na época, produziam pouco gado (ESTEVAM, 1997, p. 28).


No período da expansão da fronteira agrícola, via operacionalização dos grandes projetos agrícolas, nas décadas de 1970 a 1990, a pecuária na região tocantinense, "cresceu 150%, por ser uma atividade mais estável, oferecer menor risco, estimulada pelo crédito subsidiado e ocupação intensa de faixas de terras em melhores condições de fertilidade" (OLIVEIRA, 1998, p. 42).

Em 1985 as lavouras (permanentes e temporárias), compreendendo a área plantada ou em preparo para o plantio de culturas de longa duração e de curta duração, ocupavam 6,57% das áreas dos estabelecimentos agropecuários da região, enquanto as pastagens naturais (compreende área de pasto não plantado) ocupavam 42,38% e as plantadas (compreende área plantada destinada ao pastoreio de animais) 19%, total de 61,38%, ou seja, o uso predominante do solo estava vinculado à pecuária. Segundo o Censo Agropecuário de 2006, as lavouras ocupavam 4,53% das áreas dos estabelecimentos agropecuários; as pastagens naturais, 20,21% e as plantadas, 37,52%, perfazendo 57,74% de pastagens (IBGE, 1985-2006).

As características da atividade pecuarista no Tocantins são opostas em relação à produção familiar e empresarial, pois a produção familiar concentra-se no rebanho de corte, na produção leiteira e prevalece à indústria dos laticínios; na empresarial, o rebanho é de corte e a indústria a ela vinculada processa vegetais, sendo o abate bovino sua mola propulsora.

Para corroborar a expansão da ocupação territorial da agropecuária no Tocantins, em 1990, sua área antrópica total era de 6.014.378,8 hectares e em 2007, de 9.101.740,6 hectares, o percentual da área antrópica em relação à área total era de 21,7% em 1990 e 32,8% em 2007 e, quanto à atividade agropecuária, o percentual da sua área em relação à área antrópica era de 85,6% em 1990 e 89,3% em 2007, denotando o crescimento da ocupação da terra no Tocantins e o vigor da atividade (SEPLAN, 2009).

A área total dos estabelecimentos agropecuários do Tocantins, de acordo com o Censo Agropecuário de 2006, somava 14,29 milhões de hectares, sendo 36,5% utilizados com pastagens plantadas, 31,9% com matas e florestas naturais, 22,8% com pastagens naturais, 3,7% com lavouras temporárias, 0,7% com lavouras permanentes e matas e florestas artificiais ocupavam 0,3% da área total, ver gráfico 3 (Ipea, 2013, p. 52).

Gráfico 3: Tocantins, formas de utilização da terra (1995-2006)

Fonte: IBGE, Censo Agropecuário 2006. Elaboração: Projeto Ipea-PGDR/UFRGS, 2010-2011.

Os estabelecimentos agropecuários no Tocantins em 1996 chegavam a 44.913 e em 2006 a 56.567. No mesmo período os estabelecimentos nacionais saltaram de 4.859.865 em 1996 para 5.176.636 em 2006, ou seja, os estabelecimentos cresceram 25,9% no Tocantins, ante 6,5% de crescimento nacional. A área dos estabelecimentos agropecuários em 2006 abrangiam 62% da superfície territorial do Estado, sendo a maior dos Estados da Região Norte.

Os estabelecimentos rurais com menos de 10 ha, em 2006, no Tocantins, representavam 12,15%. No Brasil, 47,86%. As propriedades tocantinenses com menos de 100 ha representavam 66,05% e uma área total de 9,21%. No nível nacional, 85,96% e ocupavam uma área de 21,93%, e os estabelecimentos de 1.000 ha e mais, no Brasil representavam 0,91% e área de 44,42%. No Estado, 5,05% e uma área de 57,27%; os maiores estabelecimentos, aqueles com mais de 1 mil ha, somavam 5% das unidades produtivas e controlavam 57,3% da área (8,18 milhões de ha); no estrato entre 100 e 1 mil ha, ocupava 33% da área e representava 27% dos estabelecimentos. Desta forma, o modelo produtivo em fase de expansão no Tocantins tem beneficiado a concentração dos ativos fundiários e a agregação da terra como fator estratégico para o crescimento do agronegócio, ver tabela 15 e gráfico 3.

Tabela 15: Número de estabelecimentos e Área dos estabelecimentos agropecuários por grupos de área total -1995/96 - 2006

	1995/1	996		2006					
		% ESTA	BELECIMENTOS			% ESTA	BELECIMENTOS		
GRUPOS	No. ESTAB.	POR GRUPO	ACUMULATIVA	GRUPOS	No. ESTAB.	POR GRUPO	ACUMULATIVA		
Menos de 10 ha	2,614	5.82%	5.82%	Menos de 10 ha	6,872	12.15%	12.15%		
10 a menos 100 ha	17,283	38.48%	44.30%	10 a menos 100 ha	30,489	53.90%	66.05%		
100 a menos 1000 ha	19,565	43.56%	87.86%	100 a menos 1000 ha	15,382	27.19%	93.24%		
1000 e mais	3,475	7.74%	95.60%	1000 e mais	2,883	5.10%	98.34%		
500 a menos 2000 ha		0.00%	95.60%	500 a menos 2000 ha		0.00%	98.34%		
2000 e mais		0.00%	95.60%	2000 e mais		0.00%	98.34%		
sem declaração	1,976	4.40%	100.00%	sem declaração	941	1.66%	100.00%		
TOTAL	44,913	100.00%		TOTAL	56,567	100.00%			

Fonte: IBGE, Censo Agropecuário 2006.

70 60 57,3 53,9 50 40 30 22,5 20,2 20 13,3 12,1 9,0 10 5,0 0,0 0 Menos de 10 De 10 a 100 De 100 a 500 De 500 a 1.000 Mais de 1.000 Sem área Classe de área (ha) Estabelecimentos Area

Gráfico 4: Tocantins, estrutura fundiária, por classe de área (2006)

Fonte: IBGE, Censo Agropecuário 2006. Elaboração: Projeto Ipea-PGDR/UFRGS, 2010-2011.

Como detectado nos censos demográficos (1991, 2000 e 2010), a população rural decresceu rapidamente de 42,3% da população total em 1991 para pouco mais de 21% em 2010. O reflexo obviamente apareceu no campo; em 1995/96 o pessoal ocupado era de 194.221 pessoas e em 2006, de 175.405. Outro dado relevante é que trata-se eminentemente de mão-de-obra com laços de parentesco com o produtor (85,67%) do pessoal trabalhando, tabela 16.

Tabela 16: Agropecuária, segundo variáveis pesquisadas, Censo Agropecuário - 1995/96 - 2006

WADIÁWEIG DECOLUÇADA C	ANO	
VARIÁVEIS PESQUISADAS	1995-1996	2006
Estabelecimentos	44 913	56 896
Área total (ha)	16 765 716	16 825 737
Utilização das terras (ha)		
Lavouras (1)		
Estabelecimentos	31 059	26 490
Área (ha)	267 228	811 874
Pastagens (2)		
Estabelecimentos	40 649	50 072
Área (ha)	11 078 155	10 290 856
Matas e florestas (3)		
Estabelecimentos	28 505	39 545
Área (ha)	3 036 006	5 250 649
Pessoal ocupado (4)	194 221	175 405
Com laços de parentesco com o produtor	136 722	149 405
Empregados contratados sem laços de parentesco		
com o produtor	57 499	25 987
Tratores		
Estabelecimentos	4 606	5 419
Número de tratores	7 950	9 547
Efetivo de animais		
Bovinos		
Estabelecimentos	37 043	42 857
Número de cabeças	5 242 655	7 760 590
Caprinos	0 = 1 = 000	
Estabelecimentos	713	833
Número de cabeças	15 424	23 950
Ovinos		
Estabelecimentos	2 022	2 265
Número de cabeças	47 277	65 532
Suínos	1	
Estabelecimentos	20 329	22 389
Número de cabeças	219 744	224 481
Aves (5)	<u> </u>	
Estabelecimentos	33 822	40 698
Número de cabeças	2 398 854	4 478 687
Produção animal		
Leite de vaca		
Estabelecimentos	26 653	15 053
Produção leite (1 000 l)	144 150	217 319
Ovos de galinha	ı	
Estabelecimentos	31 281	22 775
Produção de ovos de galinha (1 000 dúzias)	6 246	6 841
7.05.0	0 2 . 9	

Fonte: IBGE, Censo Agropecuário 1995/2006.Nota: Lavoura permanente somente foi pesquisada a área colhida para os produtos com mais de 50 pés em 31.12.2006. (1) Lavouras permanentes, temporárias e cultivo de flores, inclusive hidroponia e plasticultura, viveiros de mudas, estufas de plantas e casas de vegetação e forrageiras para corte. (2) Pastagens naturais, plantadas (degradadas e em boas condições). (3) Matas e/ou florestas naturais destinadas à preservação permanente ou reserva legal, matas e/ou florestas naturais, florestas com essências florestais e áreas florestais também usadas para lavouras e pastoreio de animais. (4) Em 1995-1996 o pessoal ocupado com laços de parentesco com o produtor que trabalhavam no estabelecimento e recebiam salários foram incluídas como empregados contratados sem laço de parentesco com o produtor. (5) Inclui galinhas, galos, frangas e frangos.

A análise dos estabelecimentos agropecuários, segundo os Censos Agropecuários 1995/96 e 2006, tabela 16, demonstrou a baixa mecanização do campo, pois em 1995/96 10,2% dos estabelecimentos possuíam tratores, destes 70,5% com potência inferior a 100 cv. Em 2006, 9,9% das propriedades rurais possuíam tratores e 48,8% com potência menor que 100 cv (IBGE, Censo Agropecuário, 2006).

As criações de pequenos animais, notadamente suínos e caprinos, tiveram decréscimo no período de 1995 a 2011; a de ovinos permaneceu basicamente estagnada no período de 1995 a 2002 e, de 2006 a 2011, um novo impulso no segmento, quase dobrando o número de cabeças de ovinos. A criação de galos, frangas, frangos, pintos e galinhas caiu no período de 1995 a 2011, saindo de 4,5 milhões de cabeças para 4,1 milhões, em virtude principalmente da baixa produção de milho no Estado e seu alto custo de importação. A tabela 17 corrobora a assertiva.

Tabela 17: Efetivo dos rebanhos (cabeças) – 1995/96-2011

	TIPO DE REBANHO									
ANO	BOVINO	SUÍNO	CAPRINO	OVINO	GALOS, FRANGAS, FRANGOS E PINTOS	GALINHAS				
1995	5.544.400	722.328	54.559	50.553	2.475.136	2.095.440				
1996	5.242.655	219.744	15.424	47.277	1.353.335	1.101.959				
1997	5.350.885	232.797	16.527	49.679	1.423.458	1.151.649				
1998	5.441.860	241.091	17.163	50.266	1.479.406	1.199.485				
1999	5.813.170	251.396	19.016	52.039	1.384.925	1.129.780				
2000	6.142.096	246.477	20.129	51.857	1.599.269	1.228.830				
2001	6.570.653	249.879	20.723	51.228	1.630.725	1.253.900				
2002	6.979.102	242.38	20.852	51.218	1.655.145	1.243.075				
2003	7.659.743	234.184	24.164	64.624	2.042.966	1.239.295				
2004	7.924.546	225.249	24.631	66.217	2.155.180	1.217.049				
2005	7.961.926	224.481	23.707	64.718	2.402.603	1.200.639				
2006	7.760.590	224.591	23.95	65.532	2.782.465	1.219.444				
2007	7.395.450	253.74	21.923	74.855	2.885.498	1.331.895				
2008	7.392.515	257.507	23.738	85.955	3.081.345	1.211.429				
2009	7.605.249	254.181	23.467	89.265	3.101.570	1.198.900				
2010	7.994.200	266.04	25.167	108.062	2.700.380	1.455.614				
2011	8.025.400	266.067	23.213	113.544	2.710.781	1.435.050				

Fonte: IBGE - Pesquisa Pecuária Municipal

Tabela 18: Produção de origem animal – 1995/96 -2011

ANO	TIPO DE PRODUTO							
ANO	LEITE (MIL LITROS)	OVOS DE GALINHA (MIL DÚZIAS)						
1995	103.731	10.355						
1996	144.15	6.246						
1997	138.084	6.047						
1998	140.319	6.266						
1999	152.726	5.475						
2000	156.018	6.213						
2001	166.02	6.381						
2002	186.069	6.466						
2003	201.282	6.605						
2004	214.72	6.555						
2005	220.465	6.666						
2006	217.319	6.841						
2007	213.695	8.872						
2008	222.624	7.246						
2009	233.022	7.124						
2010	269.491	8.405						
2011	267.305	8.289						

Fonte: IBGE - Pesquisa Pecuária Municipal

A produção de leite aumentou 50,76% entre os anos de 1995 e 2006, mesmo com a queda de 43,52% no número de estabelecimentos que produziram leite, denotando aumento da produtividade na sua produção. Entre 2006 e 2011, a produção voltou a crescer de forma mais vigorosa com elevação de 23% (tabela 18). O efetivo de rebanhos do Estado perde participação relativa no rebanho nacional. O bovino cai da 10º posição em 1995 para a 11º em 2011, os suínos, do 14º lugar em 1995 para a 15º posição em 2011; caprinos caem três posições da 16º para 19º no mesmo período e galos, frangos, pintos e galinhas da 18º posição para a 20º posição. O baixo crescimento do rebanho bovino nos últimos anos deu-se em virtude da baixa qualidade das pastagens e do crescimento de abate do rebanho para a exportação de carnes e seus derivados.

Tabela 19: Área colhida da lavoura temporária – 1995/96-2011

	ÁREA COLHIDA (HECTARES)									
ANO	ABACAXI	ARROZ (EM CASCA)	CANA- DE- AÇÚCAR	FEIJÃO (EM GRÃO)	MANDIOCA	MELANCIA	MILHO (EM GRÃO)	SOJA (EM GRÃO)		
1995	355	167.313	4.408	8.106	11.786	854	75.388	20.117		
1996	671	137.025	2.053	5.493	7.196	433	54.553	7.019		
1997	1.109	108.244	2.728	4.575	10.176	1.544	60.755	26.308		
1998	1.343	126.172	2.936	6.098	11.885	2.904	56.672	56.822		
1999	1.382	163.967	3.105	5.505	12.052	2.599	52.973	46.256		
2000	1.667	148.543	3.562	4.472	12.023	2.235	58.575	57.919		
2001	1.564	136.045	3.74	5.413	11.286	2.467	62.248	82.098		
2002	1.682	138.986	2.763	6.746	13.387	2.22	64.16	107.377		
2003	1.854	140.025	2.745	14.251	14.706	6.009	68.708	153.048		
2004	1.926	161.655	2.722	9.23	16.305	3.804	71.825	253.466		
2005	2.049	198.038	2.762	12.695	17.694	3.109	78.182	355.3		
2006	1.973	121.873	3.538	12.801	17.352	4.654	74.1	321.09		
2007	1.842	145.301	3.714	14.668	18.209	5.055	77.524	304.096		
2008	2.301	156.481	6.306	15.811	17.539	2.363	88.619	329.508		
2009	2.273	127.908	8.651	20.699	18.552	3.505	74.874	315.56		
2010	2.077	137.946	9.780	26.134	18.612	3.416	83.229	352.875		
2011	1.963	132.522	25.524	26.179	17.632	3.553	86.358	396.132		

Fonte: IBGE - Produção Agrícola Municipal

A área colhida de soja, certamente, foi a que obteve o resultado mais expressivo nos últimos anos, saltando de parcos 20 mil hectares para quase 400 mil hectares em 2011. A cultura do abacaxi teve sua área colhida aumentada em 452%, não alcançando, no entanto, 2 mil hectares. A cultura da cana de açúcar cresceu de forma vertiginosa nos últimos anos (2010-2011) com 160,9% de aumento da sua área colhida. Quanto à cultura do arroz, o decréscimo da sua área colhida foi sistemático desde 1995 até 2006 (-27,2%), mantendo nos anos seguintes patamar médio de 140 mil hectares, com oscilações contínuas (tabela 19).

Tabela 20: Quantidade produzida da lavoura temporária (toneladas)– 1995/96 – 2011

ANO	ABACAXI (MIL FRUTOS)	ARROZ (EM CASCA) (t)	CANA-DE- AÇÚCAR (t)	FEIJÃO (EM GRÃO) (t)	MANDIOCA (t)	MELANCIA (t)	MILHO (EM GRÃO) (t)	SOJA (EM GRÃO) (t)
1995	5.697	417.148	212.747	2.726	196.934	2.422	112.113	36.471
1996	5.767	260.754	89.9	1.816	46.108	1.102	78.325	14.077
1997	24.005	249.021	115.549	2.1	179.207	7.165	111.861	45.304

ANO	ABACAXI (MIL FRUTOS)	ARROZ (EM CASCA) (t)	CANA-DE- AÇÚCAR (t)	FEIJÃO (EM GRÃO) (t)	MANDIOCA (t)	MELANCIA (t)	MILHO (EM GRÃO) (t)	SOJA (EM GRÃO) (t)
1998	28.52	309.091	119.726	2.728	185.554	10.183	92.868	123.085
1999	30.07	438.767	126.867	3.066	180.524	8.048	86.027	113.363
2000	37.152	391.827	149.523	1.734	178.482	9.712	121.387	144.362
2001	34.792	360.957	216.173	2.5	171.36	86.732	121.259	188.226
2002	37.426	309.979	151.801	3.807	196.172	76.735	126.7	244.329
2003	40.748	384.834	156.815	18.926	344.486	299.868	140.757	377.638
2004	41.981	417.139	160.096	5.729	314.758	114.588	143.157	652.322
2005	44.82	463.529	161.873	11.559	335.027	92.051	156.588	905.328
2006	42.437	263.212	193.39	11.14	335.146	134.005	142.149	742.891
2007	39.034	364.97	202.62	11.362	349.684	134.865	157.59	731.672
2008	48.018	420.584	392.071	14.062	330.678	65.396	230.27	894.309
2009	48.657	376.119	664.284	24.97	347.161	88.135	250.451	875.428
2010	41.946	447.32	715.317	33.427	337.026	87.224	282.475	991.326
2011	39.664	467.71	2.164.861	34.003	316.09	90.58	312.213	1.193.453

Fonte: IBGE - Produção Agrícola Municipal

A soja saiu de uma produção de 36 mil toneladas para 740 mil toneladas em 2006 e alcançou o patamar de 1,19 milhões de toneladas em 2011 Sua produtividade salta de 1,81 toneladas de grãos por hectare para 3,01. Os principais produtos ascenderam de forma intensa sua produtividade, à exceção da mandiocultura com aumento de produtividade de 7,3% de toneladas por hectare. Os dados foram analisados a partir da tabela 21.

As principais culturas do Tocantins no período de 1995 a 2011 ganharam posições no ranking nacional de produção. O abacaxi sai da 15° posição em 1995 para 12° em 2011, o arroz, mesmo com queda na área colhida, mas com ganhos de produtividade, de 41,76%, ocupou a 5° posição no escore nacional em 2011, ante 7° posição em 1995. A cana de açúcar, que começa a ganhar corpo no território tocantinense, sai do 21° lugar em 1995 para a 17° posição e a soja posiciona-se na 11° posição em 2011.

Tabela 21: Produtividade, lavoura temporária (t/ha – frutos/ha) – 1995/96 - 2011

	Tabela 21: 1 Todati vidade; la vodra temporaria (tria Tratos/na) 1995/90 2011									
ANO	ABACAXI (MIL FRUTOS)	ARROZ (EM CASCA) (t)	CANA-DE- AÇÚCAR (t)	FEIJÃO (EM GRÃO) (t)	MANDIOC A (t)	MELANCIA (t)	MILHO (EM GRÃO) (t)	SOJA (EM GRÃO) (t)		
1995	16.05	2.49	48.26	0.34	16.71	2.84	1.49	1.81		

ANO	ABACAXI (MIL FRUTOS)	ARROZ (EM CASCA) (t)	CANA-DE- AÇÚCAR (t)	FEIJÃO (EM GRÃO) (t)	MANDIOC A (t)	MELANCIA (t)	MILHO (EM GRÃO) (t)	SOJA (EM GRÃO) (t)
1996	8.59	1.90	43.79	0.33	6.41	2.55	1.44	2.01
1997	21.65	2.30	42.36	0.46	17.61	4.64	1.84	1.72
1998	21.24	2.45	40.78	0.45	15.61	3.51	1.64	2.17
1999	21.76	2.68	40.86	0.56	14.98	3.10	1.62	2.45
2000	22.29	2.64	41.98	0.39	14.85	4.35	2.07	2.49
2001	22.25	2.65	57.80	0.46	15.18	35.16	1.95	2.29
2002	22.25	2.23	54.94	0.56	14.65	34.57	1.97	2.28
2003	21.98	2.75	57.13	1.33	23.42	49.90	2.05	2.47
2004	21.80	2.58	58.82	0.62	19.30	30.12	1.99	2.57
2005	21.87	2.34	58.61	0.91	18.93	29.61	2.00	2.55
2006	21.51	2.16	54.66	0.87	19.31	28.79	1.92	2.31
2007	21.19	2.51	54.56	0.77	19.20	26.68	2.03	2.41
2008	20.87	2.69	62.17	0.89	18.85	27.67	2.60	2.71
2009	21.41	2.94	76.79	1.21	18.71	25.15	3.34	2.77
2010	20.20	3.24	73.14	1.28	18.11	25.53	3.39	2.81
2011	20.21	3.53	84.82	1.30	17.93	25.49	3.62	3.01

Fonte: IBGE - Produção Agrícola Municipal

A área cultivada de soja concentra-se nos municípios de Campos Lindos, Pedro Afonso, Mateiros, Dianópolis, Lagoa da Confusão e Porto Nacional, para ilustrar a relevância da atividade bovinocultora e principalmente a sojicultora (aproximadamente 70%) na balança comercial tocantinense. Ambos representam, desde 2002, mais de 90% das exportações estadua, tabela 22. Deve-se acrescentaras exportações de álcool etílico e milho, que, ainda que pequenas, alcançaram 5,0% na pauta de vendas ao mercado exterior.

Tabela 22: Participação (%) da soja, carnes e derivados nas exportações do Tocantins 2002-2012

ANOS	SOJA	CARNES E DERIVADOS	TOTAL
2002	89,2	10,4	99,6
2003	87,9	11,4	99,3
2004	86,7	9,9	96,6
2005	89,8	8,8	98,6
2006	70,4	28,4	98,8

		CARNES E	
ANOS	SOJA	DERIVADOS	TOTAL
2007	74,8	23,5	98,3
2008	82	16,8	98,8
2009	74,6	24,5	99,1
2010	74,87	25	99,9
2011	72,30	27,13	99,43
2012	69,37	25,3	94,67

Fonte: MDIC, Ministério do Desenvolvimento, indústria e comércio exterior, 2002-2012

1.4.2.4 A agricultura familiar no Tocantins

O conceito de agricultura familiar passa obrigatoriamente pela definição legal, conforme a Lei nº 11.326, de 24 de julho de 2006, que inclusive norteou os trabalhos do Censo Agropecuário 2006, fruto da colaboração entre o Ministério do Desenvolvimento Agrário (MDA) e o IBGE, que possibilitou a produção de informações oficiais básicas: quantos são, onde estão, como e o que produzem os produtores familiares. São, portanto, dados indispensáveis para formulação de políticas públicas de desenvolvimento rural e orientativas para a atuação do produtor e do mercado. A redação da Lei nº 11.326, versa o seguinte

Art. 3° Para os efeitos desta Lei, considera-se agricultor familiar e empreendedor familiar rural aquele que pratica atividades no meio rural, atendendo, simultaneamente, aos seguintes requisitos:

I - não detenha, a qualquer título, área maior do que 4 (quatro) módulos fiscais;

- II utilize predominantemente mão-de-obra da própria família nas atividades econômicas do seu estabelecimento ou empreendimento;
- III tenha percentual mínimo da renda familiar originada de atividades econômicas do seu estabelecimento ou empreendimento, na forma definida pelo Poder Executivo; (Redação dada pela Lei nº 12.512, de 2011)
- IV dirija seu estabelecimento ou empreendimento com sua família.
- $\S~1^{\circ}~O$ disposto no inciso I do caput deste artigo não se aplica quando se tratar de condomínio rural ou outras formas coletivas de propriedade, desde que a fração ideal por proprietário não ultrapasse 4 (quatro) módulos fiscais.
- § 2º São também beneficiários desta Lei:
- I silvicultores que atendam simultaneamente a todos os requisitos de que trata o caput deste artigo, cultivem florestas nativas ou exóticas e que promovam o manejo sustentável daqueles ambientes;
- II aquicultores que atendam simultaneamente a todos os requisitos de que trata o caput deste artigo e explorem reservatórios hídricos com superfície total de até

2ha (dois hectares) ou ocupem até 500m³ (quinhentos metros cúbicos) de água, quando a exploração se efetivar em tanques-rede;

III - extrativistas que atendam simultaneamente aos requisitos previstos nos incisos II, III e IV do caput deste artigo e exerçam essa atividade artesanalmente no meio rural, excluídos os garimpeiros e faiscadores;

IV - pescadores que atendam simultaneamente aos requisitos previstos nos incisos I, II, III e IV do caput deste artigo e exerçam a atividade pesqueira artesanalmente.

V - povos indígenas que atendam simultaneamente aos requisitos previstos nos incisos II, III e IV do caput do art. 3°; (Incluído pela Lei nº 12.512, de 2011)

VI - integrantes de comunidades remanescentes de quilombos rurais e demais povos e comunidades tradicionais que atendam simultaneamente aos incisos II, III e IV do caput do art. 3º. (Incluído pela Lei nº 12.512, de 2011) (BRASIL, 2006)

Em que pese à popularização do conceito de agricultura familiar tornar-se mais evidente e/ou debatido a partir da década de 1990, o termo apresentava-se, desde 1964, na Lei nº 4.504, o qual definiu

Art. 4º Para os efeitos desta Lei, definem-se: [...] II - "Propriedade Familiar", o imóvel rural que, direta e pessoalmente explorado pelo agricultor e sua família, lhes absorva toda a força de trabalho, garantindo-lhes a subsistência e o progresso social e econômico, com área máxima fixada para cada região e tipo de exploração, e eventualmente trabalho com a ajuda de terceiros (BRASIL, 1965).

O Programa Nacional de Fortalecimento da Agricultura Familiar (PRONAF), criado pelo Governo Federal em 1995 para apoiar financeiramente as atividades agropecuárias e não-agropecuárias mediante emprego da força de trabalho da família produtora rural, assim definiu o conceito de agricultura familiar no seu Manual do Crédito Rural

o agricultor familiar não pode ultrapassar um teto anual de renda; que 80% de sua renda deve proceder da exploração agrícola; e a área da propriedade familiar ser inferior a quatro módulos fiscais. [...] Terá ainda, no máximo, dois empregados permanentes, com a ajuda eventual de terceiros, dada a natureza sazonal da atividade (FEIJÓ, 2012, p. 130).

Considerando as definições, o aspecto primordial do conceito (agricultura familiar) aponta a organização em base social familiar, tamanho da área da propriedade rural, bem como sua renda anual, pontos focais de diferenciação para a empresa capitalista rural.

Os dados do Censo Agropecuário 2006 apontaram que 84,4% dos estabelecimentos agropecuários brasileiros são da agricultura familiar, entretanto, representavam 24,3% da área total dos estabelecimentos, o que denota uma estrutura fundiária concentrada, como versamos anteriormente. A área média dos estabelecimentos familiares era de 18,37 hectares; destes, 55,3% possuíam até 10 hectares; nos não familiares, a média alcançava 309,18 hectares. Ainda segundo o Censo Agropecuário 2006, a agricultura familiar tem papel capital na segurança alimentar do Brasil, pois era responsável por 87,0% da produção de mandioca, 70,0% da produção de feijão, 46,0% do milho, 38,0% do café, 34,0% do arroz, 21,0% do trigo, 58,0% do leite, 59,0% do rebanho de suínos, 50,0% de aves e 30,0% de bovinos. As receitas eram provenientes principalmente da comercialização de produtos vegetais (67,5%), das vendas de animais e seus produtos (21,0%). Outras receitas eram provenientes da prestação de serviços para empresas integradoras, agroindústria familiar e as aposentadorias e pensões; 31,0% declarou não ter obtido receitas no período (IBGE, 2009, p. 20).

No Tocantins, segundo o Censo Agropecuário de 2006, como podemos observar na tabela 23, 75,8% dos estabelecimentos da agropecuária eram da agricultura familiar, menor porcentagem dos Estados da Região Norte. Suas propriedades tinham em média 62,82 hectares (mais do triplo da média nacional) e nas não familiares as propriedades possuíam 848,53 hectares de extensão média. Nas propriedades de agricultura familiar 4,72% das terras eram destinadas às lavouras, a não familiar 4,36%. No âmbito nacional esses dados eram respectivamente 22,0% e 17,0%; em relação às pastagens, as propriedades da agricultura familiar utilizavam 60,0% das suas terras, a não familiar 55,52%. Os dados mostram a importância da pecuária, também para agricultura familiar no Estado, pois nacionalmente a agricultura familiar utilizava 45,0% para pastagens e a não familiar 49,0%.

Tabela 23: Pessoal ocupado no estabelecimento, agricultura familiar e não familiar, 2006

	PESSOAL OCUPADO(1) NO ESTABELECIMENTO EM 31.12.2006							
			SEXO					
AGRICULTURA FAMILIAR	TOTAL		HOMENS		MULHERES			
	TOTAL	DE 14 ANOS E MAIS	TOTAL	DE 14 ANOS E MAIS	TOTAL	DE 14 ANOS E MAIS		
Total	176 831	156 907	120 760	109 753	56 071	47 154		
Agricultura familiar - Lei 11. 326	122 936	107 723	80 289	71 916	42 647	35 807		
Não familiar	53 895	49 184	40 471	37 837	13 424	11 347		

Fonte: IBGE, Censo Agropecuário 2006.

(1) inclusive produtor

O pessoal ocupado nos estabelecimentos agropecuários, em 31 dez. 2006, eram provenientes prioritariamente da agricultura familiar, 69,52%, nacionalmente esse percentual era de 74,4%. 34,69% do pessoal ocupado na agricultura familiar era advinda da força de trabalho da mulher, na propriedade não familiar esse percentual representava 24,91%, demonstrando a importância da mulher na agricultura familiar. 11,27% do pessoal ocupado total era formado por menores de 14 anos, sendo que na agricultura familiar representava 12,37% e na não familiar 8,74%, motivo de preocupação, pois trata-se de crianças e adolescentes em processo de formação escolar e há necessidade de conhecer melhor suas condições de trabalho.

Das propriedades do Estado do Tocantins que obtiveram receitas, 76,62% eram da agricultura familiar; entretanto, representaram 26,57% das receitas totais. Da venda total de produtos vegetais, 16,30% das receitas foram provenientes da agricultura familiar e 83,70% da não familiar. Em relação à venda de animais, 49,90%, foram originadas das propriedades familiares e os outros 50,10% da não familiar. Cabe destacar que, das receitas geradas pelo turismo rural, 69,48% foram realizadas nas propriedades da agricultura familiar e 30,52% da não familiar.

1.5 Uso da Análise Envoltória de Dados (DEA) na agricultura

A utilização da DEA está cada vez mais disseminada e diversos(as) autores(as) dedicaram-se a utilizá-la para a avaliação da agricultura, Gomes (2008) constata que o tema mais frequente é "agricultura, seguido de agropecuária e pecuária de leite e os demais, em menor proporção, a aquicultura, arroz, cooperativas de crédito rural e pecuária de corte. O tema agropecuária está mais ligado aos casos em que se avalia eficiência de localizações geográficas (principalmente nos Estados da Bahia, Mato Grosso do Sul, Ceará, Pernambuco, Rondônia, São Paulo, Santa Catarina, Minas Gerais e Paraná), os outros à avaliação de produtores ou fazendas" (GOMES, 2008, p. 30).

Os trabalhos mais recentes na literatura internacional com o uso da DEA para Almeida (2012) são: COELLI, T. J.; RAO, D. S. P., (2005); [...] SHARMA, K. R.; LEUNG, P. S.;

ZALESKI, H. M. (1999); [...] SHERLUND, S. M.; BARRET, C.B.; ADESINA, A. A. (2002); [...] IRÁIZOZ, B.; RAPÚN, M.; ZABALETA, I (2003). (ALMEIDA, 2012, p. 35-36).

No caso brasileiro para Gomes (2008) destacam-se os trabalhos: GOMES, E,G, MELLO, J,C, BIONDI NETO, L, (2003); [...] PEREIRA et al. (2002); [...] VICENTE, (2004); [...] SOUZA et al. (1999); [...] SOUZA, (2006); [...] COSTA SOBRINHO, (2006); [...] CHINELATTO NETO, (2003); [...] SENA, (2005), etc. (GOMES, 2008, p. 35-37).

Ainda podemos evidenciar outros trabalhos: (ALMEIDA, 2012); LAMERA (2008); STUKER (2003); NOGUEIRA (2005); MELO JÚNIOR (2005); SOUZA (2003); PEREIRA (2012); BRUNETTA (2004); COURA (2004); STEFFANELLO, M.; MACEDO, M. A. S.; ALYRIO, R. D. (2009); IMORI (2011) MARQUES JÚNIOR *et al* (2011).

No Estado do Tocantins, nas pesquisas bibliográficas realizadas, destacaram-se os trabalhos de NEGREIROS (2009) e RODRIGUES, W; BARBOSA, G. F.; PARREIRA, L. A. (2009).

A metodologia da Análise Envoltória de Dados – DEA é, desta forma, ferramenta basilar para a consecução a bom termo do cumprimento dos objetivos e, por conseguinte, desta dissertação.

CAPÍTULO II

2. REFERENCIAL TEÓRICO

No segundo capítulo, desenvolve-se uma revisão conceitual sobre a Análise Envoltória de Dados (DEA), realçando-se inicialmente a teoria da produção, estrutura teórica econômica para a análise da eficiência produtiva. A partir dessa base conceitual, pormenorizam-se as principais características da DEA para análise de eficiência relativa das unidades tomadoras de decisão, e o Índice de Malmquist para mensuração da evolução da produtividade.

2.1 Teoria da Produção

A economia contemporânea reúne um conjunto heterogêneo de atividades produtivas, e a produção de bens e serviços compreende a conversão da força de trabalho, das matérias primas, dos recursos tecnológicos e os serviços fornecidos pelas instalações e máquinas/equipamentos, em bens e serviços finais. Os recursos produtivos utilizados pelas unidades produtoras transformam os insumos (*inputs*) ou fatores de produção, em produtos (*outputs*). A relação entre os insumos do processo de produção e o produto resultante é caracterizada como função de produção. Para Besanko e Braeutigam, a função de produção

É uma representação matemática das várias técnicas de produção que a empresa pode escolher para realizar suas atividades. [...] A função de produção nos mostra a quantidade máxima de produto que a empresa pode produzir, dadas às quantidades de insumos que emprega (BESANKO e BRAEUTIGAM, 2004, p. 147).

O produto alcançado no processo produtivo e os insumos aplicados na consecução desta produção podem ser grafados na seguinte função de produção (2.1)

$$q = f(x_1, x_2, x_3, ... x_n)$$
 (2.1)

Onde q é a quantidade produzida do bem e x identifica as quantidades utilizadas de diversos fatores, respeitado o processo de produção mais eficiente escolhido. A simplificação reduz a uma função de apenas duas variáveis (2.2):

$$q = f(L, K) (2.2)$$

Sendo q a quantidade de produto, L a mão de obra e o capital, K. A função de produção da equação (2.2) nos revela o máximo volume de produto que uma unidade produtiva poderia obter a partir de uma dada combinação de mão-de-obra e capital.

As funções de produção descrevem (Pindyck e Rubinfeld, 1994) o que é tecnicamente viável quando a empresa está operando de forma eficiente, isto é, a utilização combinada de insumos da forma mais eficaz possível.

O exemplo apresentado por Varian (2012) nos mostra o conjunto de produção, ou seja, as combinações de insumos e produtos que compõem formas tecnologicamente viáveis de produzir. Com um insumo x e um produto y, o ponto (x,y) se encontra no conjunto de produção que é tecnologicamente viável a produção de uma quantidade y de produto com o uso de uma quantidade x de insumo. O conjunto de produção, pois, nos mostra as alternativas tecnológicas possíveis com as quais as unidades tomadoras de decisões se confrontam. Os pontos no conjunto de produção, como A e B são ineficientes em termos tecnológicos, como os C e D são eficientes (ver figura 6).

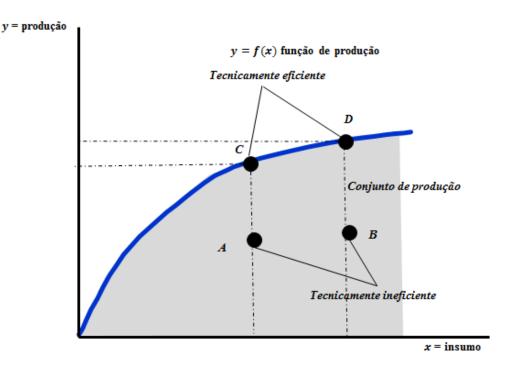


Figura 6: conjunto de produção

Fonte: Adaptado de Varian, 2012, p. 354.

Caso a função de produção (Varian, 2012) utilize dois insumos, mediria a quantidade máxima de produção que poderíamos obter se utilizássemos unidades do fator 1 e unidades do fator 2. Neste caso, utiliza-se as isoquantas (mesma quantidade), composto de todas as ordenações realizáveis dos insumos 1 e 2 que são precisamente aptos para produzir certa quantidade de produto. Caso haja substitutibilidade perfeita, a isoquanta é uma linha reta; se o processo de substituição não for constante, a isoquanta terá configuração curvilínea; se a tecnologia modificar-se, ela alterará a isoquanta, por isso sua importância na análise da eficiência do processo produtivo (figura 7). As isoquantas, como curvas que representam todas as possíveis combinações de insumos, que resultam no mesmo volume de produção (Pindyck e Rubinfeld, 1994, p.218) descrevem a função de produção e mostram a flexibilidade que as empresas têm quando tomam decisões de produção.

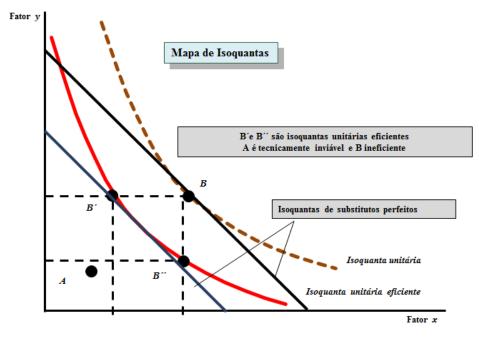


Figura 7: Mapa de isoquantas

Fonte: Adaptado de Besanko e Braeutigam, 2004, p. 155.

Na função de produção é importante destacar o prazo, se nos referimos ao curto prazo, dizemos que um ou mais fatores de produção não são modificados (insumos fixos) em níveis previamente determinados, no longo prazo todos os insumos tornam-se variáveis. É importante sublinhar que esses conceitos não se referem a um período de tempo distinto e que dependem muito mais das escolhas que estejamos analisando, sendo díspar para cada processo produtivo, devido a suas particularidades.

Na função de produção, determinar-se-á o produto total, a produtividade média(o produto total dividido pela quantidade total de insumos) e a produtividade marginal, isto é, o produto extra adicionado para cada unidade adicional de insumo.

A mensuração do crescimento da produção em conjunto com as elevações dos insumos empregados é medular para o entendimento do processo produtivo das unidades produtoras. A questão descrita refere-se aos retornos de escalas. Assim, a equação nos mostra o aumento percentual na produção, quando a unidade produtiva aumenta as quantidades de todos os seus fatores de produção em uma determinada porcentagem (ver equação 2.3).

Retornos de escala =
$$\frac{\% \Delta (quantidade de produto)}{\% \Delta (quantidade de todos os insumos)}$$
 (2.3)

Considere a exemplificação (Besanko e Braeutigam, 2004) em que a unidade produtora utilize dois fatores de produção, trabalho, L, e capital, K, para produzir uma quantidade de produto Q. Admitamos que os fatores de produção sejam alterados proporcionalmente $\lambda > 1$, caso Φ o aumento proporcional resultante da quantidade produzida Q, (ou seja, a quantidade de produção aumenta de Q para ΦQ) então:

 Caso Φ > λ, configura-se como rendimentos crescentes de escala (figura 8), ou seja, quando a produção cresce mais que proporcionalmente ao aumento nas quantidades dos fatores de produção, considerados na análise (economias de escalas);

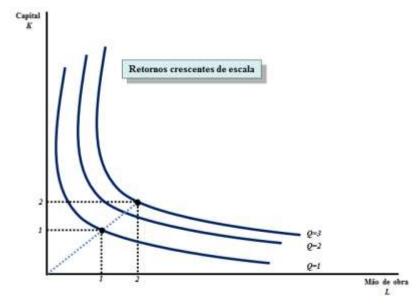


Figura 8: Retorno crescente de escala

Fonte: Adaptado de Besanko e Braeutigam, 2004, p. 167.

 Caso Φ = λ, configura-se como rendimentos constantes de escala (figura 9), neste caso, significa que um aumento proporcional nos fatores de produção ocasionará um aumento exatamente proporcional na produção; e

Retornos constantes de escala

Q=3
Q=2
Q=1

Mão de obra
L

Figura 9: Retorno constante de escala

Fonte: Adaptado de Besanko e Braeutigam, 2004, p. 167.

 Caso Φ < λ, configura-se como rendimentos decrescentes de escala (figura 10), quer dizer que o aumento proporcional nos fatores de produção resulta em elevação menos que proporcional na produção (deseconomias de escala).

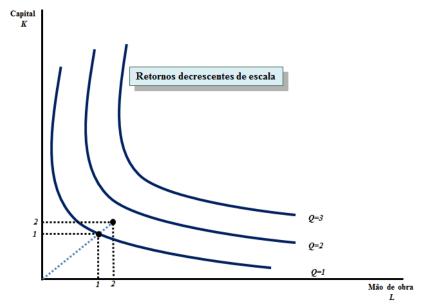


Figura 10: Retorno decrescente de escala

Fonte: Adaptado de Besanko e Braeutigam, 2004, p. 167.

Há ainda a questão das diversas combinações possíveis dos produtos que podem ser produzidos, considerando a utilização e/ou limites dos insumos de produção, que forma a fronteira de possibilidades de produção (FPP), ver figura 11, que mostra as quantidades máximas de produção que podem ser obtidas por uma economia, dados o seu conhecimento tecnológico e a quantidade de insumos disponíveis (Samuelson e Nordhaus, 2001, p. 8).

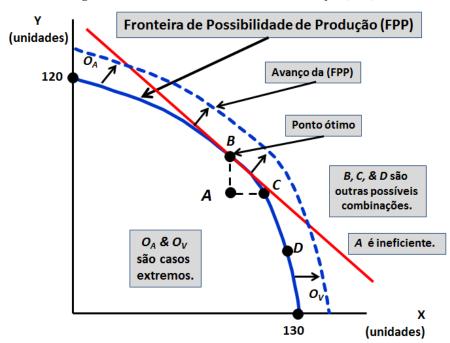


Figura 11: Fronteira de Possibilidade de Produção (FPP)

Fonte: Adaptado de SAMUELSON e NORDHAUS, 2001, p.8.

A produção será eficiente caso esteja sobre a fronteira de possibilidade de produção (FPP), como os pontos B, C e D, representados na figura 11, o ponto A opera de forma ineficiente, pois está abaixo da fronteira de produção (intervalo 0_A a 0_V), o ponto B representa o ponto ótimo de produção. Deve-se destacar que a eficiência não significa uma combinação fixa de dois produtos. Na verdade, pode-se produzir somente um produto, como os casos extremos de 0_A e 0_V , ou ainda suas combinações intermediárias, ressaltando, que a FPP nos mostra uma relação de trade off, quer dizer que é necessário dispor de um bem para produzir uma unidade adicional do outro bem.

2.2 As bases para análise da eficiência e produtividade

Os assuntos relacionados à eficiência e produtividade são cada vez mais recorrentes e importantes no meio acadêmico, público e empresarial, principalmente quando situados em ambientes concorrenciais, empreendedores e inovadores. Dessarte, revelar as potencialidades do crescimento produtivo, bem como as transformações no grau de eficiência e produtividade ao longo do tempo, conduz os tomadores de decisões à formulação de estratégias e políticas "adequadas" aos dilemas que lhes são postos.

A atenção à necessidade de medir a eficiência das unidades produtivas, na economia, inicia com Pareto (1906), e depois, na década de 1950, origem atual das medidas de eficiência em DEA. O trabalho de Farrel (1957), primeiro empreendimento empírico em que analisa a mensuração da eficiência de um conjunto de unidades produtoras, partiu dos estudos de Koopmans (1951) e Debreu (1951).

A alocação eficiente, no sentido de Pareto é caracterizada como uma alocação em que:

Não há como fazer com que todas as pessoas envolvidas melhorem; ou não há como fazer com que uma pessoa melhore sem piorar outra; ou; todos os ganhos com as trocas se exauriram; ou não há trocas mutuamente vantajosas para serem efetuadas, e assim por diante (VARIAN, 2012, p. 617).

A eficiência de Pareto é um "objetivo modesto, pois ela nos informa que devemos efetuar todas as trocas mutuamente vantajosas, porém não indica quais são as melhores" (PINDYCK e RUBINFELD, 1994, p. 766).

A alocação eficiente no sentido de Pareto (Varian, 2012) é exemplificada na figura 12, no ponto M do diagrama, o conjunto de pontos acima da curva de indiferença de A não interrompe o conjunto de pontos acima da curva de indiferença de B. O local onde A está melhor é distinto do local onde B está melhor. Por conseguinte, qualquer ação que melhora uma das partes obrigatoriamente piora a outra, não há trocas que melhorem ambos nessa alocação.

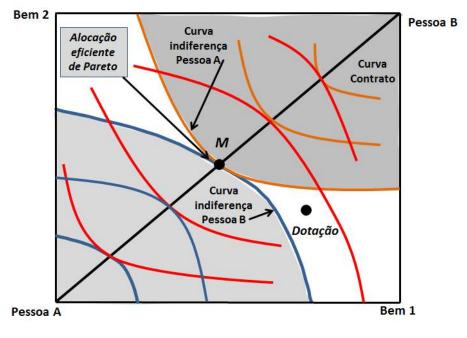


Figura 12: Alocação eficiente de Pareto

Fonte: Varian, 2012, p.616.

A eficiência no contexto de Koopmans (1951), "it was final goods which were accorded this property, in that they were all constrained so that no final good was allowed to be improved if this improvement resulted in worsening one or more other final goods" (COOPER, SEIFORD e ZHU, 2004, p. 5). Para Koopmans, a técnica empregada na administração deve escolher

The "technique" employed in production is itself the result of managerial choice (going beyond the discarding of unwanted factor quantities). Managers choose between, or employ efficient combinations of, several processes to obtain in some sense best results. Speaking still in terms of one product of given quality, an efficient manager chooses that combination of productive activities which maximizes the amount produced for given available quantities of factors which have given qualitative characteristics. In this concept, the quality characteristics of the available factors and of the desired product specify the variables entering in the production function. The available quantities of the factors specify the values of the variables, and the maximal *output* specifies the value assumed by the function (KOOPMANS, 1951, p. 34).

O conceito de eficiência de Koopmans "refer to as technical efficiency: an input-*output* vector is technicall efficient if, and only if, increasing any *output* or decreasing any input is

possible only by decreasing some other *output* or increasing some other input" (KOOPMANS, 1951, p. 60).

O conceito de eficiência de Pareto-Koopmans, não permitia mensurar a ineficiência, que segundo Raa (2003) fora abordado por Debreu (1951). "Debreu measures the inefficiency of the allocation of resources in an economy by calculating how much less resources could attain the same level of satisfaction to the consumers" (RAA, 2003, p. 3). Para Daraio e Simar (2007), Debreu considerou a explicação para este problema com o uso de uma medida radial

Debreu offered the first measure of productive efficiency with his coefficient of resource utilization. Debreu's measure is a radial measure of technical efficiency. Radial measures focus on the maximum feasible equiproportionate reduction in all variable inputs, or the maximum feasible equiproportionate expansion of all outputs. They are independent of unit of measurement (DARAIO e SIMAR, 2007, p. 14).

O trabalho seminal de Farrel(1957) de programação não paramétrica utilizou-se da fonte de Koopmans (1951) e Debreu (1951) para delimitar os conceitos de eficiência, eficiência técnica e eficiência alocativa. Para Daraio e Simar(2007) o empreendimento de Farrel ampliou o escopo de Koopmans(1951) e Debreu(1951) na medida em que

Farrel extended the work initiated by Koopmans and Debreu by noting that production efficiency has a second component reflecting the ability of producers to select the right technically efficient input-output vector in light of prevailing input and output prices. This led Farrel to define overall productive efficiency as the product of technical and allocative efficiency. Implicit in the notion of allocative efficiency is a specific behavioral assumption about the goal of the producer; Farrel considered cost-minimization in competitive inputs markets, although all the behavioral assumption can be considered. Although the natural focus of most economists is on markets and their prices and thus on allocative rather than technical efficiency and its measurement, he expressed a concern about human ability to measure prices accurately enough to make good use of allocative measurement, and hence of overall economic efficiency measurement (DARAIO e SIMAR, 2007, p. 15).

Os trabalhos que se seguiram a Farrel (1957), de acordo com Wilhelm (2006), tiveram como objetivo aperfeiçoar a sua medida de eficiência, por diversos meios, a fim de se conseguir uma medida adequada ao conceito de eficiência Pareto-Koopmans. O labor que vem sendo empregado para dirimir as imperfeições da medida Debreu-Farrel originou a DEA.

2.3 Conceitos de eficiência e produtividade

A eficiência é a comparação dos produtos obtidos com os insumos aplicados. Por conseguinte, quanto maior a quantidade de produtos alcançados, maior a eficiência da unidade produtora. Para Mello *et al* (2005) a eficiência é um conceito relativo, pois compara o que foi produzido, dados os recursos disponíveis, com o que poderia ter sido produzido com os mesmos recursos (MELLO *et al*, 2005, p,2522).

A produtividade de uma empresa para Coelli *et al* (2005, p. 2) é definida "as the ratio of the output(s) that it produces to the input(s) that it uses". Para Ferreira e Gomes (2009), a produtividade relaciona-se à forma de aplicação dos recursos para executar a produção, quer dizer que a produtividade está relacionada à razão entre produtos e recursos, consoante a equação 2.4.

$$Produtividade = \frac{Outputs}{Inputs}$$
 (2.4)

A complexidade do processo produtivo, para Mariano, Almeida e Rebelatto (2006, p. 40) exige, pois, procedimento matemático que contemple uma DMU a apresentar múltiplos *inputs* e *outputs*. Assim, para conceber melhor, o *input* virtual e o *output* virtual podem ser determinados, correspondentemente, como uma combinação linear de todos os *inputs* e *outputs* referentes a uma DMU, por meio de um valor. A equação 2.5 apresenta o procedimento matemático de cálculo da produtividade total.

$$Produtividade = \frac{u1.y1 + u2.y2 + u3.y3...}{v1.x1 + v2.x2 + v3.x3...} = \frac{O_v}{I_v}$$
(2.5)

Sendo:

ui = Utilidade do output i;

yi = Quantidade do output i;

vj = Utilidade do *input j*;

67

xj =Quantidade do *input j*;

 $O_v = Output$ virtual; e

 $I_v = Input$ virtual.

A definição de eficiência de um produto é determinado como a divisão entre um indicador de performance desse produto (P) e o seu correlato máximo (P_{max}) . Logo a eficiência de uma DMU é expressa pela equação 2.6, e, como taxa relativa, pode variar de 0 a 1, a qual também pode ser transcrita na forma percentual.

$$Eficiência = \frac{P}{P_{max}}$$
 (2.6)

Sendo:

P = Produtividade da DMU; e

 P_{max} = Produtividade máxima que pode ser alcançada pela DMU.

Para Fried, Lovell e Schmidt (2008) a eficiência produtiva deve ser examinada a partir do produto observado e o obtido segundo os insumos aplicados, ou ainda pelos insumos observados e os insumos mínimos potencialmente necessários, ou mesmo por ambas as combinações. A eficiência produtiva pode ter duas medidas, a técnica e a alocativa:

By the *efficiency* of a producer, we have in mind a comparison between observed and optimal values of its output and input. The exercise can involve comparing observed output to maximum potential output obtainable from the input, or comparing observed input to minimum potential input required to produce the output, or some combination of the two. In these two comparisons, the optimum is defined in terms of production possibilities, and efficiency is technical. It is also possible to define the optimum in terms of the behavioral goal of the producer. In this event, efficiency is measured by comparing observed and optimum cost, revenue, profit, or whatever goal the producer is assumed to pursue, subject, of course, to any appropriate constraints on quantities and prices. In these comparisons, the optimum is expressed in value terms, and efficiency is economic (FRIED, LOVELL e SCHMIDT, 2008, p. 8).

Em termos gerais, portanto, a eficiência econômica se decompõe em duas partes: a técnica e a alocativa. A eficiência técnica caracteriza a maior produção possível por unidade de insumo, que se relaciona com a maximização da produtividade da terra, ou com a maximização da produtividade do capital (máquinas e equipamentos). A alocativa "reflete a habilidade de uma firma utilizar os insumos em proporções ótimas, dados os seus respectivos preços, minimizando os custos" (FERREIRA e GOMES, 2009, p. 53). A eficiência econômica, portanto, pressupõe uma tecnologia de produção tecnicamente eficiente e também a relação de mais baixo custo dentre todas as combinações possíveis dos fatores considerados na análise. Para Coelli (1996) "these two measures are then combined to provide a measure of total economic efficiency" (COELLI, 1996, p. 3).

Os termos eficiência e produtividade não são sinônimos para Coelli *et al* (2005), para ilustrar as diferenças entre os conceitos, destacamos a figura 13.

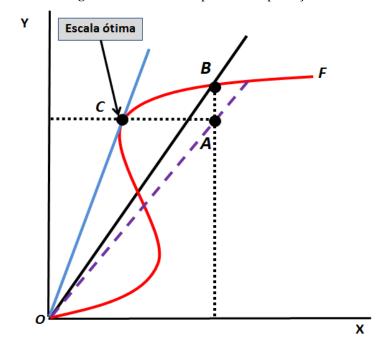


Figura 13: Curva de um processo de produção

Fonte: Adaptado de Coelli, et al, 2005, p. 5

Pela figura 13, observa-se que o segmento $\overline{0C}$ tangencia a função de produção no ponto C, o maior ângulo possível, sendo a inclinação crescente até esse ponto (C) e decrescente a partir do ponto C, portanto, a produtividade média decresce. A inclinação

menor no segmento $\overline{0B}$ indica produtividade média decrescente após o ponto C, sendo este o máximo da produtividade média, o ponto ótimo. O ponto A é não produtivo e ineficiente, os pontos B e C são eficientes, uma vez que estão sobre a fronteira. Uma atividade situada no segmento \overline{CA} , adjacente a C, é mais produtiva e menos eficiente que a atividade B, por não se encontrar na fronteira de produção.

Sendo o ponto A ineficiente e de produtividade menor que os pontos B e C, poderia alcançar a produtividade máxima reduzindo a quantidade de insumo (orientação a *inputs*), mantendo a mesma produção, acarretando seu deslocamento para o ponto C, ou aumentar a quantidade de produto (orientação a *outputs*), mantendo a mesma proporção de insumo, acarretando seu deslocamento para o ponto B, tornando-se eficiente.

Na figura 14, é possível visualizar as duas formas de orientação a *inputs* e a *outputs* para se alcançar a eficiência. Na fronteira de eficiência f(x), a DMU ineficiente representada pelo ponto P será eficiente reduzindo os recursos até alcançar o ponto B ou aumentará os produtos até avançar ao ponto D.

A eficiência é definida para Mello *et al* (2005, p. 2523) pelo quociente *AB/AP* e é um número entre 0 e 1. No outro caso, a eficiência é dada por *CP/CD* também no valor que oscila entre 0 e 1; entrementes, diversos autores usam nesse caso (orientado a *output*) valores superiores a 1.

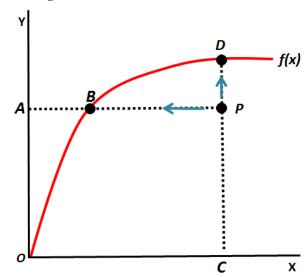


Figura 14: Alcance da fronteira de eficiência

Fonte: Mello *et al* (2005, p. 2522)

70

Assim, para Coelli et al (2005), podemos concluir:

From this discussion, we conclude that a firm may be technically efficient but may still be able to improve its productivity by exploiting scale economies. Given that changing the scale of operations of a firm can often be difficult to achieve quickly, technical efficiency and productivity can in some cases be given short-run and long-run interpretations (COELLI, *et al*, 2005, p. 4).

As medidas de eficiência assumem, portanto, dois modelos contrastivos:

- Orientação input: redução de insumo(s); e
- Orientação *output*: aumento do(s) produto(s)

2.3.1 Medidas de eficiência

2.3.1.1 Medidas de eficiência orientada a insumo

Farrel (1957) ilustrou suas ideias a partir do exemplo de uma DMU que emprega dois fatores de produção, para a confecção de um único produto, sob as condições de retorno constante à escala. Esse pressuposto nos permite representar a tecnologia por uma isoquanta unitária convexa, sendo sempre igual a 1, de uma DMU totalmente eficiente.

A questão central, conforme Ferreira e Gomes (2009), sobre a eficiência técnica orientada a insumo é: "de quanto podem ser reduzidas proporcionalmente as quantidades de insumos sem mudar as quantidades produzidas?" (FERREIRA e GOMES, 2009, p. 54).

Considere uma DMU, de acordo com a figura 15, que emprega dois insumos, x1 e x2, para a produção única, y, no ponto P, que não está situado sobre a isoquanta, portanto tecnicamente ineficiente, representada pela distância QP, a qual indica que os insumos, x1 e x2, podem ser reduzidos equiproporcionalmente, sem no entanto, diminuir sua produção, y. A redução, geralmente representada em termos percentuais é expressa pela razão QP/OP, percentual em que os insumos, x1 e x2, devem ser reduzidos pela ação radial, OP, no intuito de que a segunda DMU torne-se eficiente também. A eficiência técnica (ET_i) dessa DMU orientada a insumo é referida pela sentença por (2.7):

$$ET_i = \frac{0Q}{0P}, \text{ sendo } \frac{0Q + QP}{0P} = 1 \text{ logo, } \frac{0Q}{0P} + \frac{QP}{0P} = 1;$$

$$ET_i = \frac{0Q}{0P} = 1 - \frac{QP}{0P}, \text{ sendo } 0 \le \frac{0Q}{0P} \le 1$$
(2.7)

Como $0 \le ET_i \le 1$, a medida revelada propicia determinar o grau de ineficiência técnica da DMU. Caso $ET_i=1$, a DMU será tecnicamente eficiente, situando-se sobre a isoquanta eficiente, por exemplo, o ponto Q, (figura 15). Caso $ET_i=0$ a DMU será totalmente ineficiente.

A R Q Isoquanta unitária

S' X1/q

Figura 15: Eficiência técnica e alocativa orientada ao insumo

Fonte: Adaptado de Farrel, 1957, p. 254

Se é conhecida a razão entre os preços dos insumos, configurada pela reta de isocusto AA (figura 15), podemos mensurar a eficiência alocativa (EA_i) orientada a insumo, compreendida pela equação 2.8:

$$EA_i = \frac{0R}{0Q}$$
, e que: $0 \le \frac{0R}{0Q} \le 1$ (2.8)

O segmento \overline{RQ} , constitui a redução nos custos de produção que ocorreria caso a produção acontecesse em um ponto de eficiência alocativa, no exemplo o ponto Q', e, não no ponto Q, que é eficiente tecnicamente, mas não alocativamente. Deve-se destacar que o segmento \overline{RP} significa a redução imperativa nos custos de produção da DMU apresentada pelo ponto P.

As diferenças básicas entre ineficiência técnica e alocativa orientada a insumo, resultam para Santos e Vieira (2004, p. 123) da utilização inadequada, ou seja, excessiva dos insumos, no caso da ineficiência técnica. No caso da alocativa, resultam da utilização de proporções inadequadas dos insumos, dados os seus preços relativos, isto é, quando a taxa marginal de substituição entre os insumos não for igual à razão dos seus preços de compra e, nos dois casos, o custo não será minimizado.

A eficiência econômica total orientada a insumo (EE_i) é aplicada pelo produto da eficiência técnica e alocativa (2.9):

$$EE_i = ET_i. EA_i = \frac{0Q}{0P}. \frac{0R}{0Q} = \frac{0R}{0P}, e: 0 \le \frac{0R}{0P} \le 1$$
 (2.9)

Sendo o primeiro termo da multiplicação a eficiência técnica da DMU e, consequentemente, o segundo termo a eficiência alocativa. Assim, quando a DMU estiver produzindo no ponto simultaneamente sobre a linha isoquanta e de isocusto, alcançaremos a eficiência econômica, isto é, a DMU utilizará a quantidade necessária de insumos e com os melhores preços.

2.3.1.2 Medidas de eficiência orientada a produto

Assim como na mensuração da eficiência orientada a insumo, Farrel (1957) também ilustrou suas ideias para medir a eficiência orientada a produto, a partir de uma isoquanta com rendimentos constantes de escala que nos permite novamente representar a tecnologia por uma isoquanta unitária côncava.

A questão central, para Ferreira e Gomes (2009), em relação à eficiência técnica orientada a produto é: "de quanto podem ser elevadas proporcionalmente as quantidades de produtos sem mudar as quantidades utilizadas de insumos?" (FERREIRA e GOMES, 2009, p. 57).

A eficiência técnica orientada ao produto (ET_o), uma DMU que emprega o insumo x1, para a produção de y1 e y2, que encontra-se por exemplo, no ponto A, representa uma DMU ineficiente, pois, não está situada sobre a isoquanta. A distância AB (ineficiência técnica), indica a quantidade pela qual todos os produtos, y1 e y2, devem ser elevados equiproporcionalmente, sem, no entanto utilizar insumos adicionais. A eficiência técnica orientada a produto é expressa pela razão 0A/0B, percentual em que os produtos, y1 e y2, devem ser acrescidos pelo movimento radial, ao longo do segmento $\overline{0B}$, demonstrada na figura 16.

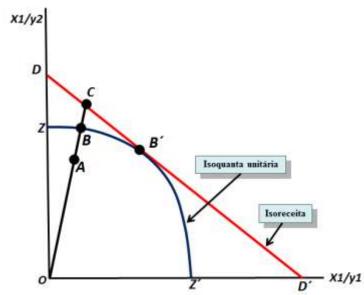


Figura 16: Eficiência técnica e alocativa orientada ao produto

Fonte: Coelli, et al, 2005, p. 55

Por sua vez, a eficiência técnica orientada ao produto é dada pela equação (2.10):

$$ET_o = \frac{0A}{0B}$$
, sendo $\frac{0A + AB}{0B} = 1 \log_0, \frac{0A}{0B} + \frac{AB}{0B} = 1;$ (2.10)

$$ET_o = \frac{0A}{0B} = 1 - \frac{AB}{0B}$$
, sendo $0 \le \frac{AB}{0B} \le 1$

As informações obtidas sobre os preços nos proporciona desenharmos uma linha de isoreceita, DD', e desta forma calcular a eficiência alocativa orientada ao produto (EA_o) , como podemos certificar na equação (2.11):

$$EA_o = \frac{0B}{0C}$$
, e: $0 \le \frac{0B}{0C} \le 1$ (2.11)

O segmento \overline{BC} representa o crescimento na receita de venda da produção que ocorreria caso a produção fosse ao ponto C. Representa também a elevação necessária da receita de produção da DMU simbolizada pelo ponto A. O ponto B configura-se como a produção unitária eficiente de maior receita, dados os preços de venda dos produtos y1 e y2.

Para Ferreira e Gomes (2009, p. 59), a ineficiência técnica orientada a produtos resulta da produção escassa de produtos e a alocativa advém da produção de proporções inadequadas dos produtos, dados os seus preços relativos. A produção no ponto C tem eficiência alocativa, mas tecnicamente ineficiente. No ponto B' sobressaem as eficiências técnica e alocativa.

A eficiência econômica total orientada a produto (EE_o) é equivalente à multiplicação da eficiência técnica e alocativa (2.12):

$$EE_o = ET_o. EA_o = \frac{0A}{0B}. \frac{0B}{0C} = \frac{0A}{0D}, e: 0 \le \frac{0A}{0D} \le 1$$
 (2.12)

Em relação às medidas de eficiência, Coelli *et al* (2005) observa três importantes destaques:

First, technical efficiency has been measured along a ray from the origin to the observed production point. Hence, these measures hold the relative proportions of inputs (or outputs) constant. One advantage of these radial efficiency measures is that they are units invariant. That is, changing the units of measurement (e.g., measuring quantity of labour in person hours instead of person years) does not change the value of the efficiency measure. A non-radial measure, such as the shortest distance from the production point to the production surface, seems intuitively appealing, but such a measure is not invariant to the units of measurement. Changing the units of measurement, in this case, could result in the identification of a different "nearest" point (COELLI, et al, 2005, p. 56-57).

As eficiências orientadas a produto, técnica, alocativa e total variam no intervalo de 0 a 1.

2.3.1.3 Eficiência de escala

A mensuração da eficiência técnica e da eficiência total nos permite calcular a eficiência de escala, pois uma DMU pode ser eficiente tecnicamente e alocativamente. No entanto, sua escala de produção, pode não ocorrer no ponto ótimo, logo uma DMU pode estar produzindo abaixo ou acima dessa escala.

Na figura 17, as DMU's que operam nos pontos *A*, *B* e *C* são eficientes tecnicamente, pois estão na fronteira de produção, no entanto não são igualmente produtivas em função dos efeitos de escala. A DMU *A* produz com retornos crescentes de escala, a qual poderia ser mais produtiva, com a elevação da sua escala de produção até alcançar o ponto *B*. O ponto *C* produz com retornos decrescentes de escala, poderia ser mais produtivo caso diminuísse sua escala de produção para o ponto *B*. O ponto *B* não seria capaz de tornar-se mais produtivo, pois opera em escala ótima.

Retorno constante de escala

Retorno variável de escala

Figura 17: Eficiência de escala na produtividade

Fonte: Coelli, et al, 2005, p. 59

Na figura 18, apresentamos uma DMU, no ponto D, que opera com ineficiência técnica, pois não está sobre a fronteira de produção. Seu nível de escala pode ser melhorado passando do ponto D para o ponto E na fronteira de retorno variável de escala, a qual remove sua ineficiência técnica. Com o avanço, sua situação pode ainda ser melhor deslocando-se do ponto E para o ponto B, neste caso, superando a ineficiência de escala.

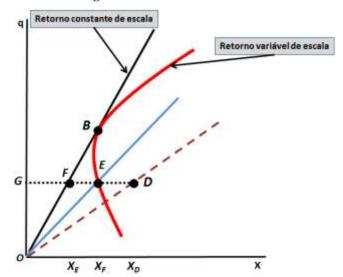


Figura 18: Eficiência de escala

Fonte: Coelli, et al, 2005, p. 61

A eficiência técnica da DMU D pressupondo retorno constante de escala (ET_{RCE}) é dada pela razão (2.13):

$$ET_{RCE} = \frac{GF}{GD} \tag{2.13}$$

A eficiência técnica considerando retorno variável de escala (ET_{RVE}) da DMU no ponto D é igual a razão (2.14):

$$ET_{RVE} = \frac{GE}{GD} \tag{2.14}$$

A eficiência de escala (*ES*) pode então ser calculada pela razão entre a eficiência técnica de retorno constante de escala e de retorno variável de escala, como apresentada em (2.15):

$$ES = \frac{ET_{RCE}}{ET_{RVF}} = \frac{\frac{GF}{GD}}{\frac{GE}{GD}} = \frac{GF}{GE}$$
 (2.15)

A eficiência de escala, desta forma, pressupõe que as DMU's funcionem com retornos crescentes, constantes ou decrescentes. As de rendimentos crescentes operam abaixo da escala ótima, portanto devem elevar sua produção. As de rendimentos decrescentes estão acima da escala ótima, caracterizando a indispensabilidade de redução da produção. A DMU em melhor situação, conforme figura 18, situa-se no ponto *B*, a qual resulta da combinação de retorno constante de escala e eficiência técnica, com operação sem desperdícios, ou seja, no ponto ótimo.

2.4 Mensuração da eficiência

A literatura econômica consagra duas abordagens para estimar a eficiência relativa das DMU's: a paramétrica e a não-paramétrica.

Para Sarafidis (2002), a principal diferença entre as duas abordagens é que a paramétrica específica sua função de produção ou a função de custo, que não é o caso do método não-paramétrico que "in fact, the degree of "parameterisation" of the production or cost function can have serious implications in comparative efficiency analysis, and can be considered to be responsible for the different advantages and disadvantages that each approach has" (SARAFIDIS, 2002, p. 2).

O tratamento paramétrico baseia-se em técnicas econométricas e inclui a análise de regressão simples, que procura estimar a produção ou a função de custo, e a Análise de Fronteira Estocástica ou *Stochastic Frontier Analysis* (SFA). Para Almeida e Rebelatto (2006), o principal objetivo da SFA é

estimar uma função para obter a máxima produção ao combinar eficientemente os fatores [...] envolve uma função de produção específica para dados "cross-section" com um termo de erro com dois componentes, um para contabilizar os efeitos aleatórios e outro para contabilizar a ineficiência tecnológica (ALMEIDA e REBELATTO, 2006, p. 4).

As abordagens não-paramétricas usam técnicas de programação matemática, sendo a principal técnica a DEA, mais ajustável que "os modelos de fronteira paramétrica, porque não precisa estabelecer uma tecnologia de parâmetros que determine, a *priori*, as relações entre insumos e produtos" (NOGUEIRA, 2005, p. 27).

A figura 19 mostra as principais técnicas de mensuração da eficiência, conforme sua abordagem, segundo Sarafidis (2002).

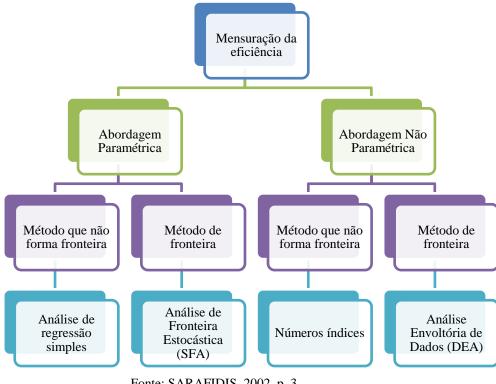


Figura 19: Técnicas de mensuração da eficiência

Fonte: SARAFIDIS, 2002, p. 3

As principais vantagens e desvantagens dos modelos de eficiência DEA e SFA, segundo POZO (2002), são destacadas na figura 20:

DEA Frontera estocástica INCONVENIENTES VENTAJAS No especifica la forma funcional · Es preciso prefijar una función de producción y distribución de v. aleatorias · Aporta información útil para la gestión (grupos de comparación, seguimiento de ana · Menos información (no slacks) objetivos) • No es preciso ponderar a priori las · Ponderaciones outputs (función frontera) variables del modelo multiproducción • Un único resultado (óptimo de Pareto) · Posibilidad de óptimos locales (MV) INCONVENIENTES VENTAJAS · Modelo deterministico · División error aleatorio-ineficiencia · Complicación en obtener test · Test de bondad de ajuste de los modelos (análisis de sensibilidad del modelo) y de significación de los parámetros · Extensión del análisis de indicadores · Análisis de causalidad · Menor sensibilidad a los comportamientos · Influencia alta en la frontera de outliers extremos (Pertenecen a los grupos de comparación)

Figura 20: Vantagens e desvantagens dos principais modelos de análise de eficiência

Fonte: POZO, 2002, p. 14

As abordagens paramétricas, Mello *et al* (2005, p. 2525), desenvolvem um plano de regressão a começar das análises (figura 21) e a DEA potencializa cada análise particular com o objetivo de mensurar a fronteira de eficiência, definida pelas unidades que são Pareto eficientes.

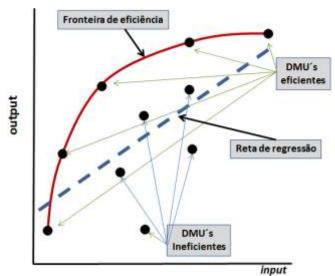


Figura 21: Comparação DEA (abordagem não-paramétrica) e Regressão Linear (abordagem paramétrica)

Fonte: Adaptado de Mello, et al, 2005, p. 2525

Os métodos não estão isentos de críticas e enfrentam seus dilemas, seja no campo teórico ou prático. Deste modo, Sarafidis (2002) destaca que as estimativas de eficiência determinadas não devem ser interpretadas como resultados definitivos de ineficiência, mas podem ser desenvolvidas abordagens com o uso de diferentes técnicas, porquanto "this implies that one can opt for a spread of relative efficiency estimates rather than a single ranking of relative efficiency based on a single method" (SARAFIDIS, 2002, p. 16).

2.5 Método analítico: Análise Envoltória de Dados (DEA)

2.5.1 Características gerais

A DEA tem origem nos estudos seminais de Farrel (1957) em "The Measurement of productive efficiency", artigo clássico sobre mensuração da eficiência e produtividade em que

as DMU´s utilizam-se dos mesmos insumos e produzem os mesmos produtos e executam trabalhos similares. No entanto, poucos autores o consideraram nas duas décadas seguintes como Boles (1966), Shepard (1970) e Afriat (1972) até a dissertação de Edwardo L. Rhodes, cuja temática desenvolvida, referia-se à eficiência de escolas públicas, considerando como insumos o número de professores-hora e tempo dedicado da mãe em leituras com seus filhos e tendo como produtos os escores aritméticos, melhoria de auto-estima auferida por testes psicológicos e capacidade psicomotora, (LINS E CALÔBA, 2006, p. 255). Seu trabalho foi supervisionado por William Wager Cooper e, em 1978, o termo *Data Envelopment Analysis* fora utilizado pela primeira vez, ano de sua publicação (COELLI, *et al.*, 2005, p. 162).

A DEA descreveu, consoante Cooper, Seiford e Zhu (2004)

In their originating study, Charnes, Cooper, and Rhodes (1978) described DEA as a mathematical programming model applied to observational [that] provides a new way of obtaining empirical estimates of relations such as the production function and/or efficient production possibility surfaces – that are cornerstones of moderns economies (COOPER, SEIFORD e ZHU, 2004, p. 17).

O modelo proposto inicialmente por Charnes, Cooper e Rhodes (1978) tinha como orientação o insumo e retornos constantes de escala. Trabalhos posteriores como Färe, Grosskopf e Logan (1983) e Banker, Charnes e Cooper (1984) propuseram o modelo com retornos variáveis de escala (COELLI, *et al*, 2005, p. 162).

O trabalho teórico, com a utilização da Análise Envoltória de Dados, situa-se na teoria da função de produção com crescente utilização para analisar o desempenho das unidades produtivas, e, portanto, apropriada para avaliar os entraves de produção e adaptar atividades desenvolvidas consideradas eficientes.

Para Marinho e Façanha (2001) a DEA propõe

A Análise Envoltória de Dados, desenvolvidas por Charnes, Cooper e Rhodes (1978) propõem obter, entre outras medidas, fronteiras e scores de eficiência relativa. As medidas obtidas são comparativas, uma vez que se baseiam na identificação de best practices dentre os casos observados e analisados, e, para cada caso, podem ser decompostas em medidas de ajuste e de desajuste em relação a valores de fronteira (target) para cada *input* e para cada *output*. Essa informação é valiosa e reveladora da consistência do desempenho de unidades e do sistema para avaliadores e gestores (MARINHO e FAÇANHA, 2001, p.12).

Para corroborar com a assertiva anterior, Ferreira e Gomes (2009, p.23), "os modelos DEA são ferramentas técnicas, atualmente cada vez mais utilizadas para orientar decisões estratégicas de organizações empresarias e beneméritas".

Ainda, para Ferreira e Gomes a DEA define

O posicionamento competitivo relativo de um conjunto de organizações ou atividades contrapondo as suas eficiências ou ineficiências produtivas técnicas, de escala e alocativas, [...] entre os atributos operacionais estão: a) a determinação da eficiência relativa de cada organização produtiva; b) possibilidade de identificar as economias de insumos ou aumentos de produção e c) informações sobre os preços dos insumos (FERREIRA e GOMES, 2009, p.17).

Gomes *et al* (2005, p, 2520) define a DEA como "uma ferramenta matemática para a medida de eficiência de unidades produtivas", e complementa com algumas de suas características

O objetivo primeiro de DEA consiste em comparar um certo número de unidades produtivas que realizam tarefas similares e se diferenciam nas quantidades dos recursos consumidos e das saída produzidas. Destacamos ainda os seguintes objetivos: identificar as unidades eficientes, medir e localizar a ineficiência [...]; determinar a eficiência relativa das unidades, contemplando cada uma relativamente a todas as outras que compõem o grupo a ser estudado [...]; subsidiar estratégias de produção que maximizem a eficiência [...]; estabelecer taxas de substituição entre as entradas, entre as saídas e entre entradas e saídas, permitindo a tomada de decisões gerenciais [...] (MELLO et al, 2005, p.2535).

A DEA tem sido utilizada para objetivos amplos como expressa Golany e Roll (1989) por apresentar

Identification of the sources and amounts of relative inefficiency in each of the compared units, in any of its input-output dimensions; Ranking of the units by their efficiency outcomes; Evaluation of management heading the compared units; Evaluating the effectiveness of programs or policies, which are outside the control of the units, and differentiating between program inefficiency and managerial inefficiency; Creating a quantitative basis for reallocating resources among the units under evaluation. Re-allocation policies may take into account the slacks found in some units, as well as the virtual multipliers obtained for the various inputs at different units. The general purpose of such re-allocation policies is to shift (limited)

resources to units where they would be utilized more effectively in generating desired outputs; Identification of efficient units (or efficient input-output relations) for purposes not directly related to comparison among the units. An example for such an objetive is the use of DEA outcomes to determine test markets for the trial of new products; Analysis and scrutiny of prevailing standards on specific input-output relations against actual performance; e Comparison and contrasting of results from previous studies (GOLANY e ROLL, 1989, p. 238).

Ainda, de acordo com as referências de Golany e Roll (1989), o estudo de eficiência com a utilização da DEA deve ser caracterizado em três fases: i) definir e selecionar as DMU's; ii) determinar os insumos e produtos pertinentes na análise das DMU's; e iii) aplicar os modelos DEA e análise dos resultados, como apresentado no fluxograma, figura 22, a seguir:

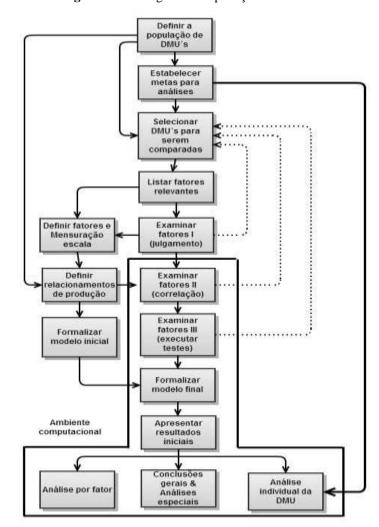


Figura 22: Fluxograma de aplicação da DEA

Fonte: GOLANY e ROLL, 1989, p. 240

As principais características do método DEA, para Lins e Calôba (2006),

Difere dos métodos baseados em avaliação puramente econômica, que necessitam converter todos os "inputs" e "outputs" em unidades monetárias; Os índices de eficiência são baseados em dados reais (e não em fórmulas teóricas); É uma alternativa e um complemento aos métodos da análise da tendência central e análise custo-benefício; Considera a possibilidade de que os "outliers" não representem apenas desvios em relação ao comportamento "médio", mas possíveis *benchmarks* a serem estudados pelas demais DMU's; e ao contrário das abordagens paramétricas tradicionais, DEA otimiza cada observação individual com o objetivo de determinar uma fronteira linear por partes ("piece-wise linear") que compreende o conjunto de DMU's Pareto-Eficiente (LINS e CALÔBA, 2006, p. 258).

O amplo interesse que a DEA desperta em analistas, cientistas, gestores empresariais e públicos, engenheiros e economistas, para Charnes, *et al* (1997) advém de três características importantes do método

1) Characterization of each DMU by a single summary relative-efficiency score; 2) DMU specific projections for improvements based on observable referent revealed best-practice DMUs; and 3) Obviation by DEA of the alternative and indirect approach of specifying abstract statistical models and making inferences based on residual and parameter coefficient analysis (CHARNES, *et al*, 1997, p. 7).

A DEA é um método de "apoio à decisão de natureza multicritério e, portanto, capaz de modelar melhor a complexidade do mundo real" (LINS e CALÔBA, 2006, p. 258).

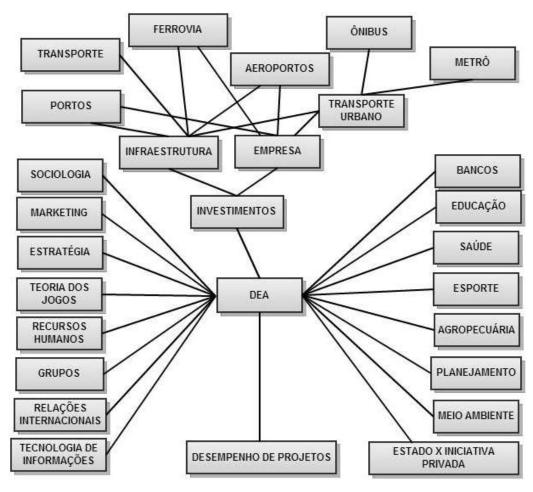
Algumas questões para evitar distorções e armadilhas em DEA devem ser consideradas, para Dyson *et al* (2001, p. 245-259), como: analisar DMU's não homogêneas, a quantidade de fatores, com a inclusão exacerbada que diminui o poder de distinção das DMU's, o conjunto dos fatores deve ser usual às unidades, a supressão de variáveis altamente correlacionadas poderá gerar alterações substanciais nas análises de eficiência, subjetividade na mensuração de informações qualitativas e as distorções quanto ao uso de índices e volumes.

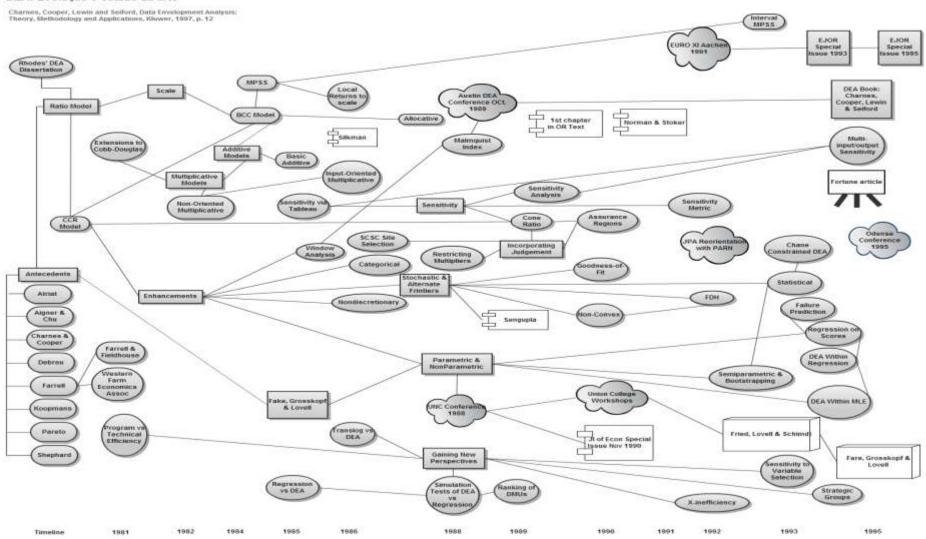
A terminologia dos principais termos utilizados na DEA é ilustrada a seguir:

- Unidade Tomadora de Decisão (DMU): são as unidades produtivas em que se mensura
 a eficiência da sua operacionalidade. Configuram-se como unidade autônoma e
 correspondem aos mais variados universos de atuação: instituições públicas (saúde,
 educação, transporte, social, etc.), empresariais (agropecuária, indústria, serviços, etc.)
 e beneméritas (ONG´s, filantropia, projetos sociais, etc.);
- Insumos (*inputs*) e produtos (*outputs*): são os recursos da base (entradas ou fatores de produção) do sistema produtivo e o resultado do processo de transformação;
- Benchmark: espelham o padrão de eficiência e referência que deve ser objetivado pelas DMU's ineficientes;
- Outliers: pontos extremos ou valores extremos, valores fora do padrão, dados tendenciosos que podem ocasionar possíveis desvios nos resultados;
- Folgas: excesso de uso do insumo ou escassez de produção (input/output slack); e
- Pesos: são os valores em que os insumos e produtos das DMU's são multiplicados e, portanto, determinados seus respectivos insumos e produtos virtuais.

Os demais termos já foram detalhados anteriormente e/ou serão objeto de discussões específicas no decorrer desta dissertação.

O crescente uso da DEA, para Paiva Jr (2000), se deve basicamente à flexibilidade e facilidade de aplicação do método, como exposto na figura 23.




Figura 23: Aplicação da DEA

Fonte: Adaptado de PAIVA JR, 2000, p. 53

A figura 24 apresenta o estado da arte no desenvolvimento da DEA, cujos trabalhos de base de Pareto, Farrell, Koopmans e Debreu foram subsídios para a dissertação de Rhodes (1978), como marco inicial da DEA.

Figura 24: Evolução e estado da arte (DEA)

DEA: Evolução e estado da arte

Fonte: CHARNES et al, 1997, p. 12

2.5.2 Modelos e modelagens da DEA

Os modelos matemáticos, para Mariano, Almeida e Rebelatto (2006, p. 14), "configuram a realidade por meio de procedimentos matemáticos". Desta forma, os modelos clássicos, CCR (Charnes, Cooper e Rhodes,1978) e BCC (Banker, Charnes e Cooper, 1984) caracterizam a realidade à luz da eficiência total e técnica.

Os modelos CCR ou *constant returns to scale* (CRS) apresentam retornos constantes de escala, e o modelo BCC ou *variable returns to scale* (VRS) representa retornos variáveis de escala.

Para Gomes, Mello e Biondi Neto (2003), a escolha de um modelo determina

1)As propriedades implícitas dos retornos de escala; 2) a geometria da superfície de envelopamento dos dados, que tem relação com as medidas de eficiência; 3) As projeções de eficiência, ou seja, o caminho das DMU's ineficientes até a fronteira de eficiência (GOMES, MELLO e BIONDI NETO, 2003, p. 12).

As modelagens são para Mariano, Almeida e Rebelatto (2006) as distintas maneiras de reproduzir determinado modelo, os quais são orientados a insumo ou produto.

Para qualquer programação linear (PL), nomeado Primal, para Dyson, Thanassoulis e Boussofiane (1990, p. 22), é possível formular outro problema de PL (denominado Dual) usando os mesmos dados, o qual fornecerá a mesma informação sobre o problema que está sendo modelado. E, para Dyson, Thanassoulis e Boussofiane (1990, p. 22), complementam que "the dual model is constructed by assigning a variable (dual variable) to each constraint in the primal model and constructing a new model on these variables".

Em relação a PL, Ramanathan (2003) faz as seguintes observações:

a) As the optimal values of primal and dual objective functions are equal, represents the efficiency of firm; b) The number of constraints of the primal depends upon the number of DMUs, while the number of constraints of the dual depends upon the number of inputs and outputs; c) The computational efficiency of LP codes depends to a greater extent upon the number of constraints than on the number of variables. In a typical DEA exercise, about 5 inputs and 5 outputs are considered, while the number of units being compared is much larger (of the order of hundreds or even thousands). Hence, the dual formulation is computationally more efficient than the primal (RAMANATHAN, 2003, p. 51).

Com tal característica a DEA apresenta, (figura 25), quatro modelagens para simbolizar um modelo CCR e/ou BCC:

- Insumo primal;
- Insumo dual;
- Produto primal; e
- Produto dual.

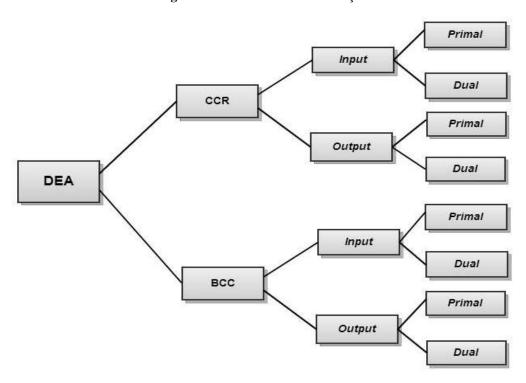


Figura 25: Modelos DEA e orientação

Fonte: MARIANO, ALMEIDA e REBELATTO, 2006, p.14

2.5.2.1 Modelo DEA-CCR Primal

O modelo CCR, em referência às letras iniciais dos seus idealizadores, Charnes, Cooper e Rhodes (1978) é o primeiro desenvolvido para DEA. O modelo clássico CCR corresponde à premissa de retornos constantes de escala, ou seja, qualquer variação nas entradas (*inputs*) produz variação proporcional nas saídas (*outputs*), não existem (*des*) economias de escala

com mudanças nos níveis de produção. Tem como característica base a determinação da eficiência total ou produtiva das DMU's em análise.

O modelo determina, de acordo com Gomes, Mello e Biondi Neto (2003, p. 13), "a eficiência pela divisão entre a soma ponderada das saídas (*output* virtual) e a soma ponderada das entradas (*input* virtual) generalizando, assim, a definição de Farrel (1957)".

O modelo CCR admite que a DMU possa determinar os pesos para cada insumo ou produto, de forma que os pesos utilizados às demais DMU's acarretem uma razão de até 1.

O problema primal do modelo CCR pode ser referenciado como forma do multiplicador e o dual como forma de envelopamento.

O modelo CCR também pode ser executado com a orientação para a minimização dos insumos, apresentados na formulação matemática nas equações CCR primal (2.16, 2.17, 2.18 e 2.19) ou à maximização dos produtos, cuja formulação matemática é expressa nas sentenças do modelo CCR primal (2.20, 2.21, 2.22 e 2.23).

Modelo CCR Primal orientado a input:

$$MAX = \sum_{i=1}^{m} u_i \cdot y_{i0}$$
 (2.16)

Sujeito a:

$$\sum_{i=1}^{m} u_i \cdot y_{ik} - \sum_{j=1}^{n} v_j \cdot x_{jk} \le 0 \ para \ k = 1, 2, \dots z$$
 (2.17)

$$\sum_{j=1}^{n} v_j. x_{j0} = 1 (2.18)$$

$$u_i. v_{jk} \ge 0, \qquad i = 1, ..., m, j = 1 ..., n$$
 (2.19)

Sendo:

 u_i = utilidade do output i;

 v_i = utilidade do input j;

 x_{jk} = quantidade do input j da DMU k;

 y_{ik} = quantidade do output i da DMU k;

 x_{j0} = quantidade do input j da DMU em análise;

 y_{i0} = quantidade do produto i da DMU em análise/

z = número de unidades em avaliação;

m = número de outputs; e

n = número de inputs.

A equação (2.16) é a função objetivo do modelo de programação matemática a ser maximizada e para o cálculo de produtividade de uma determinada DMU. A equação (2.17) representa as restrições do conjunto, uma para cada DMU do setor e a que está sendo analisada, restringindo a produtividade das DMU's a 1.

A resolução do modelo nos permite analisar a eficiência da DMU considerando: caso a mesma tenha valor igual a 1 será eficiente, visto que as restrições postas não limitaram seu valor e sua produtividade alcançou o valor máximo. Caso contrário, sendo o valor revelado menor que 1, a DMU é ineficiente, pois existem DMU's mais produtivas, chamadas de *benchmarkings* da DMU analisada, que serão modelos de referência para a superação da ineficiência da mesma.

Modelo CCR Primal orientado a *output*:

$$MIN = \sum_{j=1}^{n} v_j. x_{j0}$$
 (2.20)

Sujeito a:

$$\sum_{i=1}^{m} u_i \cdot y_{jk} - \sum_{j=1}^{n} v_j \cdot x_{jk} \le 0 \text{ para } k = 1, 2, \dots z$$
(2.21)

$$\sum_{i=1}^{m} u_i \cdot y_{i0} = 1 \tag{2.22}$$

$$u_i. v_{jk} \ge 0, \qquad i = 1, ..., m, j = 1 ..., n$$
 (2.23)

Sendo:

 u_i = utilidade do output i;

 v_j = utilidade do input j;

 x_{jk} = quantidade do input j da DMU k;

 y_{ik} = quantidade do output i da DMU k;

 x_{i0} = quantidade do input j da DMU em análise;

 y_{i0} = quantidade do produto i da DMU em análise/

z = número de unidades em avaliação;

m = número de outputs; e

n = número de inputs.

O objetivo do modelo CCR orientado ao produto é a maximização do nível de produção, permanecendo o mesmo nível de insumos. Na sua função objetivo, o modelo será resultante do inverso da eficiência relativa. Na equação matemática (2.20), as variáveis decisórias são as mesmas do modelo orientado a insumos. As restrições são representadas pela equação 2.21, 2.22 e 2.23.

2.5.2.2 Modelo DEA-BCC Primal

O modelo BCC, considera retornos variáveis de escala; tem essa extensão, devido às contribuições e o reconhecimento pelos estudos desenvolvidos por Banker, Charnes e Cooper (1984). O modelo "substitui o axioma da proporcionalidade entre *inputs* e *outputs* pelo axioma da convexidade" (MELLO, *et al*, 2005, p. 2531). O modelo BCC distingue-se do CCR, para Wanke, Silveira e Barros (2009, p. 12) em função de o "modelo BCC assumir a premissa mais realista de retornos variáveis de escala em contraste com os retornos constantes de escala do modelo CCR".

Matematicamente, o modelo BCC primal orientado a *input* e a *output*, se expressa por meio das equações (2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30 e 2.31) a seguir:

Modelo BCC Primal orientado a *input*:

$$MAX = \sum_{i=1}^{m} u_i \cdot y_{i0} + u \tag{2.24}$$

Sujeito a:

$$\sum_{i=1}^{m} u_i \cdot y_{ik} + u - \sum_{j=1}^{n} v_j \cdot x_{jk} \le 0 \ para \ k = 1, 2, \dots z$$
 (2.25)

$$\sum_{j=1}^{n} v_j \cdot x_{j0} = 1 \tag{2.26}$$

$$u_i e v_j \ge 0, u_i e v_j \ge 0 i = 1, ..., m, j = 1 ..., n$$
 (2.27)

Orientado a output:

$$MIN = \sum_{j=1}^{n} v_j . x_{j0} + v$$
 (2.28)

Sujeito a:

$$\sum_{i=1}^{m} u_i \cdot y_{ik} - v - \sum_{j=1}^{n} v_j \cdot x_{jk} \le 0 \ para \ k = 1, 2, \dots z$$
(2.29)

$$\sum_{i=1}^{m} u_i \cdot y_{i0} = 1 \tag{2.30}$$

$$u_i e v_j \ge 0, u_i e v_j \ge 0 i = 1, ..., m, j = 1 ..., n$$
 (2.31)

Sendo:

 u_i = peso calculado para o produto i;

 v_i = peso calculado para o insumo j;

 x_{ik} = quantidade do insumo j para unidade k;

 y_{ik} = quantidade do produto i para a unidade k;

 x_{j0} = quantidade do insumo j para unidade em análise;

 y_{i0} = quantidade do produto i para unidade em análise;

z = número de unidades em avaliação;

m = número de tipos de produtos;

n = número de tipos de insumos; e

u e v = coeficiente de retorno de escala.

o adicionamento da variável u no numerador, ou o acréscimo da variável v no denominador. Estas têm a função de assegurar as restrições das DMU's que atuam em escala diversa da DMU analisada, ao mesmo tempo sendo factível avaliar o retorno da escala em que a DMU trabalha. Para Mariano, Almeida e Rebelatto (2006, p. 14), sendo o valor de u maior que zero estão acontecendo retornos decrescentes à escala, sendo menor, opera em retornos crescentes à escala, caso seja zero atua em retornos constantes de escala. A variável v também estima a escala de operação da DMU, entrementes, interpretada de forma oposta a outra variável.

O modelo BCC externa semelhanças com o modelo CCR, sendo que a única diferença é

Neste caso, *v* sendo maior que zero os retornos serão crescentes; menor que zero, os retornos serão decrescentes e, por fim, sendo *v* igual a zero, obter-se-á retornos constantes de escala.

2.5.2.3 Modelo DEA-CCR e BCC Dual

Os modelos na forma de envelopamento são desenvolvidos como consequência do perfil dual dos modelos no modo dos multiplicadores. Como exposto anteriormente, para toda programação linear original (programa primal) existe outro programa linear associado, chamado de programa dual, o qual poderá ser empregado para propor a solução de uma questão primal.

Os modelos na forma Dual, "têm como característica essencial, envolver um número menor de restrições que o modelo primal (é uma restrição para cada *input* e *output* e uma variável para cada DMU)" (ALMEIDA, 2010, p. 81).

Modelo CCR Dual orientado a input:

 $MIN \theta$ (2.32)

Sujeito a:

$$\sum_{k=1}^{z} y_{ik} \cdot \lambda_k \ge y_{i0}, para \ i = 1, 2, \dots m$$
 (2.33)

$$\sum_{k=1}^{z} x_{jk} \cdot \lambda_k - \theta \cdot x_{j0}, \le 0, para \ j = 1, 2, \dots n$$
 (2.34)

$$\lambda_k e \theta \ge 0, k = 1, \dots j \tag{2.35}$$

Modelo CCR Dual orientado a output:

$$MAX\eta$$
 (2.36)

Sujeito a:

$$\sum_{k=1}^{z} x_{jk}. \, \lambda_k \le x_{j0}, para \, j = 1, 2, \dots n$$
 (2.37)

$$\sum_{k=1}^{z} y_{jk} \cdot \lambda_k - \eta \cdot y_{i0} \ge 0, para \ i = 1, 2, ...m$$
 (2.38)

$$\lambda_k e \eta \ge 0, k = 1, \dots j \tag{2.39}$$

Sendo:

 θ = eficiência;

η= inverso da eficiência;

 λ_k =participação da DMU k na meta da DMU em análise;

 x_{jk} = quantidade do input j da DMU k;

 y_{ik} = quantidade do output i da DMU k;

 x_{i0} = quantidade do input j da DMU em análise;

 y_{i0} = quantidade do output i da DMU em análise;

z = número de unidades em avaliação;

m = número de outputs; e,

n = número de inputs.

Modelo BCC Dual orientado a input:

$$MIN \theta$$
 (2.40)

Sujeito a:

$$\sum_{k=1}^{z} y_{ik}. \, \lambda_k \ge y_{i0}, para \, i = 1, 2, \dots m$$
 (2.41)

$$\sum_{k=1}^{z} x_{jk} \cdot \lambda_k - \theta \cdot x_{j0}, \le 0, para j = 1, 2, \dots n$$
(2.42)

$$\sum_{k=1}^{z} \lambda_k = 1 \tag{2.43}$$

$$\lambda_k e \theta \ge 0, k = 1, \dots j \tag{2.44}$$

Orientado ao output

$$MAX\eta$$
 (2.45)

Sujeito a:

$$\sum_{k=1}^{z} x_{jk}. \, \lambda_k \le x_{j0}, para \, j = 1, 2, \dots n$$
 (2.46)

$$\sum_{k=1}^{z} y_{jk} \cdot \lambda_k - \eta \cdot y_{i0} \ge 0, para \ i = 1, 2, \dots m$$
 (2.47)

$$\sum_{k=1}^{z} \lambda_k = 1 \tag{2.48}$$

$$\lambda_k e \eta \ge 0, k = 1, \dots j \tag{2.49}$$

Sendo:

 θ = eficiência:

η= inverso da eficiência;

 λ_k =participação da DMU k na meta da DMU em análise;

 x_{jk} = quantidade do input j da DMU k;

 y_{ik} = quantidade do output i da DMU k;

 x_{i0} = quantidade do input j da DMU em análise;

 y_{i0} = quantidade do output i da DMU em análise;

z = número de unidades em avaliação;

m = número de outputs; e,

n = número de inputs.

A maior parte das aplicações em DEA, para Serrano e Blasco (2006), é no modelo de envelopamento (dual), por essas evidências: "el programa lineal DEA-CCR primal input orientado viene definido por um número de restricciones igual a n+1. Sin embargo, el programa lineal DEA-CCR dual input orientado está sujeto a s+m restricciones" (SERRANO e BLASCO, 2006, p. 38).

O prevalecente subsídio, Almeida (2010), do modelo Dual é apresentar as metas para as DMU's ineficientes, metodizada da seguinte forma

1)Calcular a eficiência das DMU's; 2) determinar valor das variáveis lambda (λ) para cada DMU em análise; 3) multiplicar cada lambda da etapa anterior com os inputs e outputs das DMU's correspondentes a ele; e 4) realizar este procedimento para todas as DMU's (ALMEIDA, 2010, p. 82).

As DMU's de referência (*benchmark*) são identificadas a partir do cálculo dos lambdas (λ) do modelo para certa DMU em análise e, se λ for igual à zero, a unidade correlata a esta variável não se configurará como um *benchmark* em análise. Entretanto, se o λ não for igual a zero, teremos uma situação de referência para a DMU em verificação.

A figura 26 exibe os modelos CCR e BCC, Mello *et al* (2005, p. 2534), para uma fronteira bidimensional, a eficiência da DMU E é aplicada por $\frac{\overline{E''}\overline{E''}}{\overline{E''}\overline{E}}$ para o modelo CCR e $\frac{\overline{E''}\overline{E''}}{\overline{E''}\overline{E}}$ para o modelo BCC, neste caso orientados a *inputs*.

E'' E' E input

Figura 26: Fronteiras BCC e CCR

Fonte: MELLO et al (2005, p. 2534)

A forma linear por partes "da fronteira não-paramétrica DEA pode causar algumas dificuldades na medida da eficiência, em especial no que se refere aos segmentos da fronteira paralelos aos eixos coordenados" (GOMES, MELLO e BIONDI NETO 2003, p. 18).

Os resultados alcançados pelo modelo BCC são diferentes em sua orientação (*input* e ao *output*), pois os mesmos não são proporcionais; podemos observar, ainda, que no modelo BCC encontramos um maior número de DMU's na fronteira de eficiência, sendo, portanto, mais otimista que no modelo CCR.

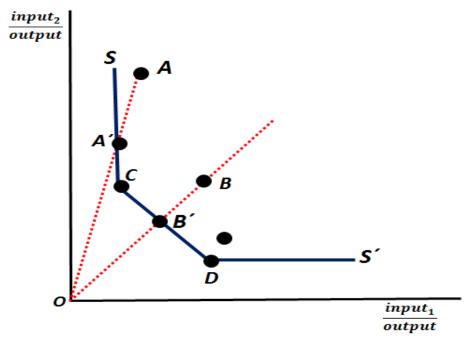


Figura 27: Medida de eficiência e folgas nos inputs

Fonte: GOMES, MELLO E BIONDI NETO, 2003, p. 18

A mensuração da eficiência técnica dos pontos A e B, figura 27, para Gomes, Mello e Biondi Neto (2003, p. 18), é dada especificamente por $\frac{0A'}{0A}$ e $\frac{0B'}{0B}$.; entrementes, será o ponto A' um ponto eficiente? Pois é possível diminuir o input₂ usado (quantidade CA') e mesmo assim, produzir uma quantidade igual de *output*. A quantidade reduzida representa a folga.

O processo de fluxo de múltiplas análises em DEA, de acordo com Lin e Tseng (2007, p. 538), pode ser representada na figura 28, que mostra, por exemplo, um valor de eficiência menor que 1 e, desta forma, o raciocínio para a ineficiência deve considerar a eficiência de escala e a eficiência técnica pura. Após a localização das fontes de ineficiência, faz-se a análise das folgas, para verificação das necessidades de melhorias, em seguida, a análise dos retornos de escala para designar a necessidade para as DMU's em aumentar, diminuir ou manter o nível de produção. Ao final, realiza-se uma análise de sensibilidade para mensurar a contribuição de cada variável para a eficiência.

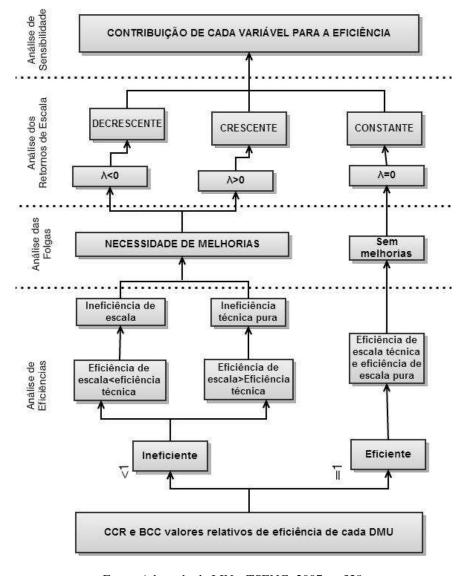


Figura 28: Fluxo de análise em DEA

Fonte: Adaptado de LIN e TSENG, 2007, p. 538

Em síntese os dois modelos clássicos para a mensuração da eficiência em DEA é o modelo CCR (aufere a eficiência total) e o modelo BCC (aufere a eficiência técnica). Para, Mariano, Almeida e Rebelatto (2006, p. 14), "a eficiência total compara a DMU com todas as concorrentes (grupo em análise) enquanto a eficiência técnica compara uma DMU apenas com aquelas que operam em escala semelhante a sua". De posse desses cálculos, é possível calcular a eficiência de escala, a qual verifica se a DMU opera abaixo ou acima da escala ótima.

2.5.3 Modelos DEA avançados

2.5.3.1 Modelo aditivo

Os modelos CCR e BCC discutidos até então apresentam as seguintes características: ou moderam o uso de insumos, mantendo a produção (orientação ao *input*) ou potencializam a produção, com o uso de insumos constantes (orientação ao *output*). O Modelo Aditivo ou Modelo Baseado em Folgas ou *Slack Based Measure* (SBM) (CHARNES, *et al*, 1997) considera que tanto a possibilidade de redução dos insumos quanto o aumento da produção possam ocorrer no mesmo período, ou seja, "uma combinação dos modelos BCC orientados a *input* e a *output* [...] maximiza as folgas em direção a uma DMU eficiente, sem redução equiproporcional ou determinação de orientação ao modelo" (GOMES, MELLO e BIONDI NETO, 2003, p. 19).

O modelo aditivo necessita de determinadas cautelas, quando empregado , como versa, Ferreira e Gomes (2009)

a)As unidades de medida utilizadas para os insumos e produtos influenciam os resultados, ou seja, unidades de medida diferentes resultam escores de eficiência diferentes; b) é preciso cuidado para não somar medidas que não sejam comensuráveis. [...] recomenda-se [...] que se tenha um bom conhecimento e experiência com setor e organizações em análise (FERREIRA e GOMES, 2009, p. 125).

Para corroborar com a assertiva, Coelli *et al* (2005) ressalta o cuidado com a utilização de medidas diferentes, "the alteration of the units of measurement, say for a labour input from days to hours (while leaving other units of measurement unchanged), could result in the identication of different efficient boundary points and, hence, different slack and λ -values" (COELLI *et al*, 2005, p. 198).

A solução ótima do modelo implica que uma DMU é eficiente quando o máximo das folgas seja zero, isto é, cada uma dessas folgas também seja zero, e somente se, for eficiente no modelo BCC. Ainda segundo Ferreira e Gomes (2009)

diferentes da unidade, que atribuem importância diferenciada na avaliação dos insumos e produtos (FERREIRA e GOMES, 2009, p. 127).

A medida SBM é, portanto, assentada nos "excessos de consumo e nas folgas na produção relativamente às quantidades observadas" (WILHELM, 2006, p. 37). A importância da medida SBM também se verifica na possibilidade de fornecer às DMU's ineficientes a devida referência para recomendar planos de produção eficientes com a supressão de excessos e folgas existentes na atividade.

2.5.3.2 Modelo de supereficiência

O modelo de supereficiência foi originalmente proposto por Andersen e Petersen (1993) como forma de melhorar a discriminação das DMU's na fronteira de eficiência. O termo Supereficiência diz respeito a, "an amended DEA model in which firms can obtain efficiency scores greater than one because each firm is not permitted to use itself as a peer" (COELLI *et* al, 2005, p. 200).

O modelo de supereficiência consiste, para Ferreira e Gomes (2009), em extrair das matrizes de insumos e produtos, que fazem parte das delimitações do modelo DEA, as informações concernentes à DMU em avaliação. Assim, o modelo supereficiência possibilita uma maior e melhor distinção entre as DMU's. Deve-se destacar que o modelo supereficiente pode ser inviável, por vezes, para algumas DMU's e, mesmo diferenciando o desempenho das DMU's eficientes, estas são confrontadas com normas distintas do modelo DEA original.

A figura 29 apresenta as DMU's A, B e C, em que utiliza dois insumos xI e x2 para um único produto y. A fronteira eficiente é dada por SS'e as DMU's A, B e C são eficientes, mas cada uma com um escore diferenciado, pois ao aplicar o modelo supereficiente é possível que as DMU's na fronteira possam ter escores maiores que 1. No exemplo, considere a DMU B, que ao mensurar a sua supereficiência deixará de fazer parte da fronteira e, portanto, a nova fronteira envolverá duas DMU's A e C e o ponto projetado B', cuja sua supereficiência será dada por um valor superior a 1: $ET_B = \frac{0B'}{0B} > 1$. Isso nos indica, que a DMU poderia

aumentar seus insumos e ainda estar dentro da tecnologia definida pelas outras DMU's analisadas.

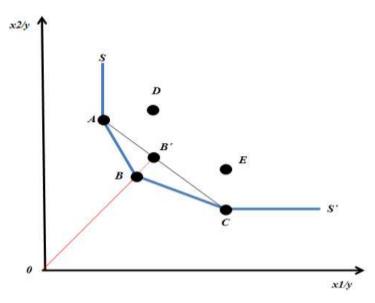


Figura 29: Supereficiência

Fonte: adaptado de COELLI, et al, 2005, p. 201

As equações a seguir apresentam as expressões, bem como, as restrições do modelo supereficiente.

$$MIN \ \theta^{VRS-Super} \tag{2.50}$$

$$\sum_{k=1}^{z} x_{jk}. \, \lambda_k \le \theta.^{VRS-Super}, x_{j0}$$
 (2.51)

$$\sum_{k=1}^{z} y_{jk}. \, \lambda_k \ge y_{j0}, para \, j = 1, 2, \dots, n$$
 (2.52)

$$\sum_{k=1}^{z} \lambda_k = 1 \tag{2.53}$$

$$\theta^{VRS-Super} \ge 0 \tag{2.54}$$

$$\lambda_k \ge 0, k = 1, 2, \dots, z$$
 (2.55)

Sendo que:

 u_i = utilidade do *output* i;

 v_i = utilidade do *input* j;

 x_{jk} = quantidade do insumo j da DMU k;

 y_{ik} = quantidade do produto i da DMU k;

 x_{i0} = quantidade do insumo j da DMU em análise;

 y_{i0} = quantidade do produto i da DMU em análise;

z = número de unidade em avaliação;

m = número de *outputs*;

n = número de *inputs*; e

 λ_k = participação da DMU k na meda da DMU em análise.

2.5.3.3 Modelo *Free Disposal Hull* (FDH)

O modelo *Free Disposal Hull* (FDH) foi formulado por Deprins, Simar e Tulkens (1984) e posteriormente estendido por Tulkens(1993), cuja motivação básica é garantir que as avaliações de eficiência sejam efetuadas a partir das performances realmente observadas (insumos e produtos), isto é, eliminam-se as DMU's virtuais que servem de alvo para as DMU's ineficientes.

O modelo FDH, não "impõe, muitas restrições na tecnologia de produção; dessa forma, ao abandonar o pressuposto da convexidade na construção da envoltória, permite que muitas unidades analisadas apareçam na fronteira, sendo classificadas como eficientes" (FERREIRA e GOMES, 2009, p. 143).

As figuras 30 e 31 mostram o modelo FDH, Ferreira e Gomes (2009), e não convexo, os limites das fronteiras orientadas ao insumo e ao produto e suas ligações demonstradas pelas linhas das DMU's A, B, C e E constituindo a envoltória do espaço de possibilidade de produção P', sendo menor do que os espaços P circunscritos pelas fronteiras dos modelos DEA, demonstrados pelas linhas pontilhadas.

B Q C F
Hipótese de convexidade

Figura 30: Fronteira FDH orientada a insumo

Fonte: FERREIRA e GOMES, 2009, p. 144

As DMU's na fronteira são as eficientes, baseadas na observação dos dados reais do grupo analisado e operadores efetivos de produção, a DMU ineficiente D é projetada para a fronteira Q, sendo a DMU B sua benchmark. O modelo "admite disponibilidade forte (free disposal) de insumos, uma vez que desconsidera a folga de insumos no deslocamento de Q para B; a existência de folgas não-zero é ignorada" (FERREIRA e GOMES, 2009, p. 145).

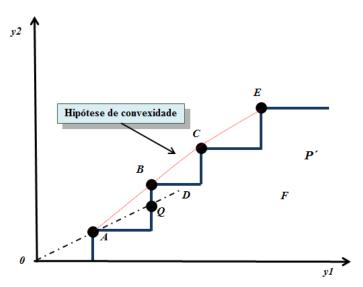


Figura 31: Fronteira FDH orientada a produto

Fonte: FERREIRA e GOMES, 2009, p. 144

A abordagem FDH para Gomes, Mello e Biondi Neto (2003)

Pode ser considerada como o melhor cenário para o cálculo das eficiências, já que sua fronteira de produção envolve melhor os dados, ou seja, é envolvida pelas fronteiras de produção CCR e BCC. Assim, as eficiências obtidas pelo modelo FDH são maiores que as calculadas pelos modelos DEA clássicos (GOMES, MELLO e BIONDI NETO, 2003, p. 22).

Dessa forma, o modelo FDH ressalta duas características em relação aos modelos clássicos: suas pontuações transmitem maior confiança devido seu melhor ajuste aos dados analisados, e sua comparação considera as DMU's observadas e não situações hipotéticas.

2.5.3.4 Modelo DEA restrições aos pesos

A determinação dos pesos agregadores até certo ponto é livre, isto é, o modelo imputa de forma autônoma os valores dos pesos não considerando os níveis de benefício entre os insumos e produtos. Para Mello *et al* (2005), "essa liberdade é importante na identificação das unidades ineficientes , ou seja, aquelas DMU's que apresentam um baixo desempenho, inclusive com seu próprio conjunto de multiplicadores" (MELLO *et al*, 2005, p. 2536). Entrementes, os pesos mensurados podem, "serem inconsistentes com os conhecimentos que se têm em relação aos valores relativos de *inputs* e *outputs*" (GOMES, MELLO e BIONDI NETO, 2003, p. 22).

A imputação dos pesos como maneira de refletir, para Gomes, Mello e Biondi Neto, (2003), a estrutura de acordo com as preferências do decisor, apesar da sua aparente simplicidade, encontra barreiras, principalmente nos aspectos técnicos e psicológicos por parte destes, mas quando existe predileção entre insumos e produtos, de acordo com Soares, Mello e Mangabeira (2009), por parte dos agentes de decisão, esses juízos de valor são inseridos aos modelos DEA através das restrições aos pesos consorciados aos insumos e/ou produtos das DMUS´s analisadas.

A incorporação de julgamento de valor, para Mello *et al* (2005), representa uma evolução na mensuração da eficiência dos modelos DEA a situações reais e, condições fora da

não negatividade. Por outro lado, o modelo de restrições aos pesos não incorpora, "a informação se um insumo apresenta utilidade maior que outro" Wilhelm (2006, p. 61).

2.5.3.5 Modelo DEA fronteira invertida

O modelo DEA de fronteira invertida, tratado por Mello *et al* (2008) foi desenvolvido por Yamada *et al* (1994) e Entani *et al* (2002), e respalda-se em inverter os insumos com os produtos, com o intuito de aperfeiçoar a distinção e devido aos empates recorrentes de eficiência entre as DMU's.

O modelo procura responder ao dilema da DMU mais eficiente em relação às DMU's eficientes. Na perspectiva da fronteira invertida, a "DMU mais eficiente é aquela que conseguir ter um desempenho mais equilibrado, ou seja, é aquela que conseguir produzir muito de todos os *outputs* e gastar pouco de todos os *inputs*" (ALMEIDA e MARIANO, 2007, p. 4). Portanto, serão eliminadas as DMU's inicialmente consideradas eficientes em virtude de um insumo ou produto com desempenho muito superior em relação às outras variáveis.

A fronteira invertida, figura 32, mostra as duas fronteiras do modelo BCC, clássica e invertida.

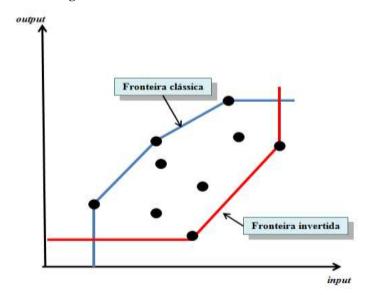


Figura 32: Fronteiras BCC clássica e invertida

Fonte: MELLO et al, 2005, p. 2539

O índice de mensuração do modelo de fronteira invertida, ou índice de eficiência composta, é definido, para Mello *et al* (2008), "pela média aritmética entre a eficiência, a eficiência em relação à fronteira DEA convencional e o complemento da eficiência em relação à fronteira invertida" tal como vista na sentença aritmética em (2.56)" (MELLO *et al*, 2008, p. 3).

$$Eficiência_{composta} = \frac{Eficiência_{padrão} + (1 - Eficiência_{invertida})}{2}$$
(2.56)

A DMU para ter a máxima eficiência composta, para Silveira, Meza, e Mello (2012), "precisa ter bom desempenho na fronteira padrão e não ter bom desempenho na fronteira invertida. Isso implica que a DMU seja boa naquelas características em que tem bom desempenho e não seja tão ruim naquelas em que seu desempenho não é dos melhores" (SILVEIRA, MEZA e MELLO, 2012, p. 790).

Após a exposição das principais características da DEA, modelos clássicos CCR e BCC e seus principais modelos avançados, apresentamos, de acordo com Coelli *et al* (2005), algumas limitações para o desenvolvimento de um estudo em DEA

Measurement error and other noise may influence the shape and position of the frontier; Outliers may influence the results; The exclusion of an important input or output can result in biased results; The efficiency scores obtained are only relative to the best firms in the sample. The inclusion of extra firms (e. g., from other countries) may reduce efficiency scores; Be careful when comparing the mean efficiency scores from two studies. They only reflect the dispersion of efficiencies within each sample - they say nothing about the efficiency of one sample relative to the other; The addition of an extra firm in a DEA analysis cannot result in an increase in the scores of the existing firms; The addition of an extra input or output in a DEA model cannot result in a reduction in the scores; When one has few observations and many inputs and/or outputs many of the firms will appear on the DEA frontier; Treating inputs and/or outputs as homogenous commodities when they are heterogenous may bias results; Not accounting for environmental differences may give misleading indications of relative managerial competence; and Standard DEA does not account for multi-period optimisation nor risk in management decision making (COELLI et al, 2005, p. 207)

2.5.4 Índice de Malmquist

O Índice de Malmquist possui essa denominação em reconhecimento ao professor Sten Malmquist (1953), em função dos seus estudos que indicaram a relação da quantidade de insumos aplicados por uma DMU entre dois períodos com a utilização da mesma quantidade de produto. O índice foi criado por Caves, Christensen e Diewert (1982), sendo que Färe (1992) viabiliza a base para construir o Índice de Malmquist utilizando técnicas de PL.

O Índice de Malmquist, para Camanho e Dyson (2006) "the index is usually applied to the measurement of productivity change over time, and can be multiplicatively decomposed into an efficiency change index and a technological change index (CAMANHO e DYSON, 2006, p. 36).

Na avaliação de Cooper, Seiford e Zhu (2004) o Índice de Malmquist avalia a variação da produtividade das DMU's entre dois períodos de tempo e delimita

as the product of "Catch-up" and "Frontier-shift" terms. The catch-up (or recovery) term relates to the degree that a DMU attains for improving its efficiency, while the frontier-shift (or innovation) term reflects the change in the efficient frontiers surrounding the DMU between the two time periods (COOPER, SEIFORD e ZHU, 2004, p. 204).

Algumas características do Índice de Malmquist tornam-no cada vez mais usual, dentre elas para Wilhelm (2006) destacam-se: não necessidade de definição da função em maximizar o lucro ou minimizar despesas; não necessidade em definir preços dos insumos e produtos e avaliar a produtividade total em períodos diversos e com a devida distinção entre alterações na eficiência técnica e transformações tecnológicas. Outro motivo que podemos evidenciar para o uso cada vez mais disseminado do Índice Malmquist é a capacidade em mensurar tecnologias de produção com a utilização de variados insumos e produtos.

A equação 2.57 apresenta a decomposição do Índice Malmquist, onde mostra a possibilidade de fracionar a evolução da produtividade, considerando a alteração da eficiência (AE) e tecnológica (AT).

$$IM = \left(\sqrt{\frac{D_0(x^t v, y^t v)}{D_t(x^t v, y^t v)}} \cdot \frac{D_0(x^0 v, y^0 v)}{D_t(x^0 v, y^0 v)}\right) \cdot \left(\frac{D_t(x^t v, y^t v)}{D_0(x^0 v, y^0 v)}\right) = AT * AE$$
(2.57)

Sendo que:

```
IM = Índice Malmquist;
```

 D_0 = Função distância relativa à fronteira do período 0;

 D_t = Função distância relativa à fronteira do período t;

 y^0v = Quantidade do output virtual da DMU em análise no período 0;

 $x^{0}v$ = Quantidade do input virtual da DMU em análise do período 0;

 $y^t v$ = Quantidade do output virtual da DMU em análise do período t;

 $x^{t}v$ = Quantidade do input virtual da DMU em análise do período t;

 $D_0(x^0v, y^0v)$ = Distância da DMU no período 0 relativa à fronteira do período 0;

 $D_0(x^t v, y^t v)$ = Distância da DMU no período t relativa à fronteira do período 0;

 $D_t(x^0v, y^0v)$ = Distância da DMU no período 0 relativa à fronteira do período t;

 $D_t(x^t v, y^t v)$ = Distância da DMU no período t relativa à fronteira do período t;

AT = Alterações tecnológicas de uma DMU entre os períodos 0 e t; e

AE = Alterações de eficiência de uma DMU entre os períodos 0 e t.

Dessa forma, os resultados alicerçam a análise da produtividade e identificam se ocorreram avanços tecnológicos, nas eficiências totais das DMU's, ou ambas as situações, para o recorte analisado. Para Almeida (2010), este processo "é o mais adequado para, de maneira direta, identificar se as mudanças no desenvolvimento de um ambiente foram relativas à mudança tecnológica ou à produtividade total dos fatores de produção de uma DMU" (ALMEIDA, 2010, p. 89).

Para Grosskopf (2002) o Índice de Malmquist define

The original malmquist index is defined in terms of distance functions which are evaluated for observed data combinations, i.e., the data being evaluated are always data we observe in some period, and these are evaluated relative to either the period t or t+1 technology, which tells us whether the observed input/output combinations have improved relative to that technology over time. That is the sense in which this is a technology index. This is in part why this index lends itself so well to a decompositions which can identify efficiency change and technical change (GROSSKOPF, 2002, p. 7).

A figura 33 mostra os modelos CCR e BCC no ano 1(período t) e 2(período t+1), que produzem um único produto q a partir de um único insumo x, para o Índice Malmquist.

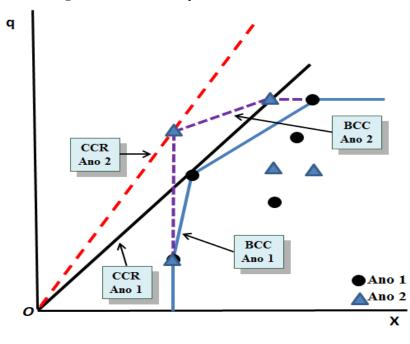


Figura 33: Índice Malmquist – DEA CCR e BCC

Fonte: Adaptado de COELLI, et al, 2005, p. 296

Em relação aos retornos constantes e variáveis de escala, Pereira (2012) enfatiza

as propriedades dos retornos constantes de escala são mais importantes para a medida da Produtividade Total dos Fatores. Quando são assumidos Retornos Variáveis de Escala (VRS) pode haver problemas, sendo então importante que o modelo CRS seja imposto a qualquer tecnologia que seja usada para estimar funções de distância para o cálculo de um índice Produtividade Total dos Fatores de Malmquist. Caso contrário, as medidas resultantes podem não refletir adequadamente os ganhos ou perdas da Produtividade Total dos Fatores resultante dos efeitos de escala (PEREIRA, 2012, p. 55).

Quando assume valor maior que 1(um), o Índice de Malmquist indica crescimento na produtividade total dos fatores do período t para o período t+1. Enquanto o valor for menor que 1(um), indica queda na produtividade total dos fatores e, sendo o valor igual a 1(um), não ocorreram alterações de produtividade.

No capítulo III, ressalta-se a metodologia, com a apresentação dos critérios de definição e seleção das DMU's, a seleção das variáveis, a escolha e aplicação do modelo DEA, os recursos computacionais para aplicação em DEA, a fonte de dados, a delimitação temporal e a delimitação espacial.

CAPÍTULO III

3. METODOLOGIA

No terceiro capítulo, descreve-se a metodologia e as etapas do procedimento metodológico para calcular o índice de eficiência e produtividade, em resposta à caracterização da área em estudo, no Capítulo I, e ao referencial teórico, no Capítulo II. Os procedimentos metodológicos operacionais são iniciados com a identificação da base de dados e definição e seleção do município como DMU, posteriormente com a seleção de variáveis e escolha e aplicação do modelo DEA e, por fim, os procedimentos computacionais.

3.1 Metodologia de pesquisa

O trabalho de investigação se realiza com a aplicação de distintos métodos, menos de forma única, e mais frequentemente utiliza-se de um método principal em conjunto com outros métodos adicionais de análise. O método utilizado nesta pesquisa é o objetivo, que procura "fundamentar as análises em evidências levantadas em relação ao fenômeno pesquisado, afastando-se de meras abstrações [...] o sentido de atenção para fenômenos concretos, e a investigação centrada em dados da realidade observada" (MUNHOZ, 1989, p. 25). Em relação ao método objetivo, Miranda Neto (2005) acrescenta

Utiliza sempre informações de fonte direta e primária e recorre a dados provenientes de fonte indireta ou secundária unicamente quando se está seguro de que podem ser considerados corretos; [...] analisar os dados informativos com olhos críticos para assegurar-se de seu significado e não buscar neles mais do que realmente contêm (MIRANDA NETO, 2005, p. 27).

Em relação à finalidade é uma pesquisa básica, e quanto ao objetivo é uma pesquisa exploratória, pois se pesquisa dados bibliográficos da agropecuária. Explicativa, na medida em que se busca analisar os fatores determinantes para certas ocorrências. Sua abordagem é

quantitativa utilizando-se da DEA e Índice de Malmquist. A técnica de pesquisa é a bibliográfica, desenvolvida "a partir de material já elaborado, constituído principalmente de livros e artigos científicos" (GIL, 2007, p. 65). Posteriormente, também foram realizadas extensas pesquisas nos bancos de teses de Universidades, Faculdades, principalmente nas que possuem Mestrado e/ou Doutorado em Desenvolvimento Regional, Engenharia da Produção, Agronomia, Administração ou Economia. Para obtenção dos dados da agropecuária dos municípios tocantinenses, a principal fonte de pesquisa foi o IBGE.

3.2 Base de dados

Os dados básicos empregados nesta pesquisa referem-se aos anos de 1995-1996 e 2006 e aos municípios do Estado do Tocantins, obtidos no Censo Agropecuário 1995-1996, cujo período de referência foi de 01/08/1995 a 31/08/1995 e 31/12/1995 a 31/07/1996 e o Censo Agropecuário de 2006, sendo o período de pesquisa de 1º de janeiro a 31 de dezembro, e como data de referência, o dia 31 de dezembro de 2006 e do Produto Interno Bruto dos municípios em igual período.

Os dados foram pesquisados no Sistema IBGE de Recuperação Automática (SIDRA) nos endereços eletrônicos: www.sidra.ibge.gov.br, http://www.ibge.gov.br/home/estatistica/ economia/agropecuaria/censoagro/default.shtm ou ainda http://www.ibge.gov.br/home/ estatistica/economia/pibmunicipios/2010/default.shtm. Inicialmente foram levantadas informações sobre 47 variáveis (inputs e outputs), posteriormente efetuou-se pesquisa para valores nulos, ausentes, desidentificados, que não constavam em ambos os períodos ou ainda variáveis diferentes entre os Censos Agropecuários, como tempo de direção do estabelecimento e migração, pluriatividade econômica do produtor e membros de sua família, residentes no estabelecimento agropecuário, diferentes práticas agrícolas e formas de ocupação da área, agricultura orgânica, atividades aquícolas e disponibilidade de água dentro do estabelecimento e, por fim, alguns tópicos com nova abordagem conceitual do Censo Agropecuário de 2006 para o de 1995-1996, que exigiu cautela quanto à análise e condução da pesquisa, quanto às variáveis da atividade econômica, produtor sem área, assentado sem titulação definitiva, grupos de área total, utilização de terras e alteração nas unidades de medida de alguns produtos.

Após a verificação dos valores nulos, ausentes, desidentificados para algum estrato em determinado município, e considerando a abordagem conceitual diferenciada e variável que não constava em ambos os períodos, ou ainda, variáveis diferentes entre os Censos Agropecuários, esses valores foram excluídos até chegar-se às variáveis: Número de estabelecimentos; área dos estabelecimentos da agricultura familiar; número de estabelecimentos que não realizaram preparação do solo; número de estabelecimentos que realizaram investimento; valor do investimento; número de estabelecimentos que obtiveram financiamento; número de estabelecimentos com tratores; pessoal ocupado; número de estabelecimentos que obtiveram receita; valor da receita e Produto Interno Bruto da agropecuária municipal.

Em 1995, o Estado do Tocantins possuía 123 municípios instalados e em 2006 os atuais 139 municípios. Em 01 de janeiro de 1997 foram instalados os municípios: Aguiarnópolis, desmembrado de Tocantinópolis; Bandeirantes do Tocantins, desmembrado de Arapoema; Barra do Ouro, desmembrado de Goiatins; Chapada de Natividade, desmembrado de Natividade; Chapada de Areia, desmembrado de Pium; Crixás do Tocantins, desmembrado de Aliança do Tocantins; Ipueiras, desmembrado de Porto Nacional; Lavandeira, desmembrado de Aurora do Tocantins; Luzinópolis, desmembrado de Cachoeirinha e Tocantinópolis; Monte Santo do Tocantins, desmembrado de Divinópolis e Barrolândia; Oliveira de Fátima, desmembrado de Fátima; Pugmil, desmembrado de Paraíso do Tocantins; Santa Rita do Tocantins, desmembrado de Brejinho de Nazaré e Cristalândia; Santa Terezinha do Tocantins, desmembrado de Nazaré; Talismã, desmembrado de Alvorada do Tocantins e Peixe e Tupirama, desmembrado de Guaraí e Fortaleza do Tabocão (SEPLAN, 2010, p. 93).

A mensuração da eficiência com o uso da DEA é calculada para todos os municípios nos dois períodos dos Censos Agropecuários 1995-1996 e 2006. No entanto, para o Índice de Malmquist, são excluídos todos os municípios instalados a partir de 01 de janeiro de 1997, no total de 16 municípios. Desta forma, calcula-se o Índice para 123 municípios.

3.3 Seleção das DMU's

A DEA, para Golany e Roll (1989) "is a technique for assessing the relative efficiency of "comparable" units, with a view to improving their performance. This implies basic assumption that differences in performance among "like" units exist and are

measurable"(GOLANY e ROLL, 1989, p. 239). Na seleção das DMU´s, deve-se ressaltar que mesmo sob condições de semelhança nas suas operações de produção, sempre encontraremos diversidades na gestão das DMU´s, pois obviamente são conduzidas por diferentes gestores. Na definição e seleção de DMU´s, as mesmas devem adotar "a mesma utilização de entradas e saídas, variando apenas em intensidade. Deve ser homogêneo, isto é, realizar as mesmas tarefas, com os mesmos objetivos, trabalhar nas mesmas condições de mercado e ter autonomia na tomada de decisões" (MELLO *et al*,2005, p. 2535). Para corroborar, com a afirmativa anterior, Golany e Roll (1989) destacam as características de um grupo homogêneo de DMU´s

the units under consideration perform the same tasks, with similar objectives; all the units perform under the same set of market conditions (this is of special importance in the analysis of non-profit organizations such as schools, army units, state hospitals, courts, etc.); the factors (both inputs and outputs) characterizing the performance of all units in the group, are identifical, except for differences in intensity or magnitude (GOLANY e ROLL, 1989, p. 239).

Na fase de escolha da DMU, Ramanathan (2003) destaca alguns pontos importantes, como o número de DMU's, pois, caso a quantidade seja elevada, as unidades na fronteira de eficiência também será alta, diminuindo, portanto, sua capacidade de diferenciação. Assim, não se deve aumentar o número de unidades de forma desnecessária. Ainda em relação ao número de DMU's, Ramanathan (2003), sublinha regras básicas

The number of DMUs is expected to be larger than the product of number of inputs and outputs in order to discriminate effectively between efficient and inefficient DMUs. However, there are many examples in the literature where DEA has been used with small sample sizes. The sample size should be at least 2 or 3 times larger than the sum of the number of inputs and outputs (RAMANATHAN, 2003, p. 173-174).

O emprego do município como unidade tomadora de decisão atende todas as características evidenciadas anteriormente (homogeneidade, mesmas condições de mercado, objetivos e autonomia nas resoluções) e ainda podemos acrescentar a valorização do município no processo de crescimento local.

Considerando as regras básicas propostas por Ramanathan (2003) com a indicação do número de DMU's ser o dobro ou o triplo da soma dos insumos e produtos, o número de 139 DMU's (total dos municípios tocantinenses) nos permitiria trabalhar com até 46 variáveis (*input* e *output*), não sendo o caso, como expusemos na discussão da base de dados (valores nulos, ausentes, desidentificados) e como apresentaremos na seleção das variáveis.

3.4 Seleção das variáveis

A seleção dos insumos e produtos atendeu inicialmente a perspectiva da lista de variáveis disponíveis para pesquisa, o que concedeu um maior entendimento do setor agropecuário e das DMU's a serem analisadas, e ao mesmo tempo, permitiu fundamentar de forma mais profunda suas diferenças, uma vez que "a etapa de seleção das variáveis em DEA é de grande importância, pois dela depende a qualidade dos resultados" (GOMES, MELLO e MANGABEIRA, 2009, p. 29). Deve-se considerar, de acordo com Meza *et al* (2007), o fato

uma diferente escolha de variáveis conduz a resultados diferentes não deve ser interpretado como uma fraqueza de DEA. Na verdade, escolher variáveis diferentes significa que se pretende levar em conta uma dimensão diferente do problema, ou seja, olhar para as DMU's segundo outro ponto de vista (MEZA *et al*, 2007, p. 25).

Após essa abordagem inicial ampla, com uma gama numerosa de variáveis, 47 no total (*inputs* e *outputs*), (o que poderia diminuir substancialmente o poder de discriminação das DMU's eficientes das ineficientes, devido a DEA ser benevolente com um grande número de variáveis, acarretando várias DMU's na fronteira de eficiência,) excluiu-se da pesquisa as variáveis de valores nulos, ausentes, desidentificados, que não constavam em ambos os Censos Agropecuários ou mesmo as que possuíam abordagem metodológica diferenciada até definir-se 9 insumos e 3 produtos:

Insumos: Número de estabelecimentos; área dos estabelecimentos; número de
estabelecimentos da agricultura familiar; número de estabelecimentos que
receberam orientação técnica; número de estabelecimentos que realizaram
investimento; valor do investimento; valor das despesas; número de tratores nos
estabelecimentos e pessoal ocupado nos estabelecimentos.

 Produtos: número de estabelecimentos que obtiveram receita; valor da receita e Produto Interno Bruto da agropecuária municipal.

Após esse procedimento, utilizou-se o método multicritério combinatório por cenários que, para Senra *et al* (2007), parte da evolução

na linha de exigir menos informação ao decisor. Para isso, não há critério de parada do algoritmo, devendo ser todas as variáveis incluídas para em seguida ser feita a comparação entre os modelos com diferentes números de variáveis (SENRA *et al*, 2007, p. 197).

O método se realiza em duas fases, sendo que, na primeira, constrói-se cenários que serão avaliados na segunda fase. Para Senra *et al* (2007), "chama-se cenário de primeira fase ao modelo com duas, três, quatro, etc, variáveis. A segunda fase limita-se a escolha do melhor cenário" (SENRA, *et al*, 2007, p. 198). As figuras 34 e 35 nos mostrarão o método empregado para a seleção de variáveis, sendo que, conforme Meza *et al* (2007), S_{EF} representa a normalização das eficiências médias para cada conjunto de variáveis, e S_{DIS} a normalização do número de DMU's eficientes para cada conjunto de variáveis e S significa a média aritmética entre S_{EF} e S_{DIS}.

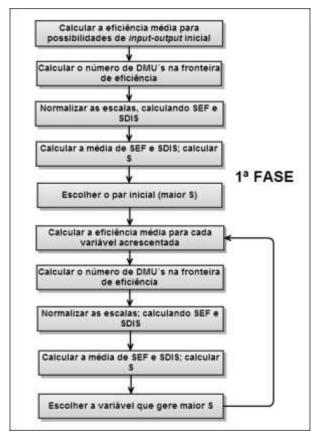
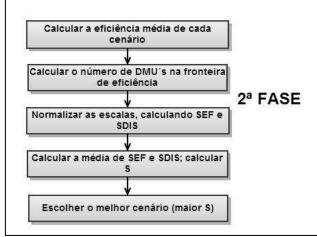



Figura 34: Primeira fase do método multicritério combinatório por cenários de seleção de variáveis

Fonte: SENRA et al, 2007, p. 198

A segunda fase finaliza com a inserção de todas as variáveis no modelo.

Figura 35: Segunda fase do método multicritério combinatório por cenários de seleção de variáveis

Fonte: SENRA et al, 2007, p. 198

A segunda fase pode ser descrita da seguinte forma, para Senra et al (2007):

1) Calcular a eficiência média para cada cenário. 2) Contar o número de DMU's na fronteira de eficiência em cada cenário. 3) Normalizar as escalas, calculando S_{EF} e S_{DIS} , como no método multicritério. 4) Fazer a média aritmética de S_{EF} e S_{DIS} , obtendo o valor S. 5) Escolher o cenário que tiver o maior valor de S. No caso de empate considera-se a que tem maior S_{DIS} (SENRA *et al*, 2007, p. 199).

Ainda como característica do método, para Meza et al (2007), pode ser ressaltada:

este modelo, ao contrário de outros modelos da literatura, não impõe um ponto de paragem arbitrário. [...] Este modelo e o modelo que dele será derivado permitem escolher não só as variáveis como o número delas a entrar no modelo. Assim, eles podem ser úteis mesmo quando há poucas variáveis e muitas DMU's (MEZA *et al*, 2007, p. 27).

A seleção de variáveis também pode ser realizada, de acordo com Brunetta (2004), por especialistas, considerando se a informação necessária não está contida em outras variáveis, se relaciona ou contribui para os objetivos da aplicação, se podem explicar a eficiência das DMU's e se, obviamente, os dados são de base segura.

3.4.1 Aplicação do método multicritério combinatório por cenários para a seleção de variáveis

Na primeira fase calcula-se a média para cada par de insumo e produto, determinando a eficiência média do par, o número de DMU's na fronteira, os valores S_{EF}, S_{DIS} e S.

Para facilitar a leitura, faremos as seguintes convenções:

• Insumos:

- Número de estabelecimentos *Input* 1;
- Área dos estabelecimentos *Input* 2;
- Número de estabelecimentos da agricultura familiar *Input* 3;
- Número de estabelecimentos que receberam orientação técnica *Input* 4;
- Número de estabelecimentos que realizaram investimento *Input* 5;

- Valor do investimento *Input* 6;
- Valor das despesas *Input* 7;
- Número de tratores nos estabelecimentos- *Input* 8; e,
- Pessoal ocupado *Input* 9.

• Produtos:

- Número de estabelecimentos que obtiveram receita *Output* 1;
- Valor da receita *Output* 2; e,
- Produto Interno Bruto da agropecuária municipal *Output* 3.

A escolha das variáveis começa relacionando seus possíveis pares iniciais, de forma normalizada (S), inclusive nesse caso com a determinação da orientação (*input* e *output*) e do modelo DEA (CCR e BCC). Como demonstrado na tabela 24, definiu-se o par inicial *input* 1 e *output* 1, ou seja, número de estabelecimentos e número de estabelecimentos que obtiveram receita, pois alcançaram o maior valor de S.

Tabela 24: Seleção do primeiro par de variáveis - método multicritério combinatório por cenários

			IN	PU	TS				OU'	TPU T	ΓS	EFICIÊNCIA	DMU's				ORIENTAÇÃO
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S	/MODELO
X									X			0.6631	6	0.6631	0.9638	0.8134	BCC OUTPUT
X									X			0.6118	1	0.6118	1.0000	0.8059	CCR OUTPUT
X									X			0.6356	6	0.6356	0.9638	0.7997	BCC INPUT
X									X			0.6118	1	0.6118	1.0000	0.8059	CCR INPUT
X										X		0.1331	2	0.1331	0.9928	0.5629	BCC OUTPUT
X										X		0.1021	1	0.1021	1.0000	0.5511	CCR OUTPUT
X										X		0.2259	2	0.2259	0.9928	0.6093	BCC INPUT
X										X		0.1021	1	0.1021	1.0000	0.5511	CCR INPUT
X											X	0.1996	4	0.1996	0.9783	0.5889	BCC OUTPUT
X											X	0.0936	1	0.0936	1.0000	0.5468	CCR OUTPUT
X											X	0.1964	4	0.1964	0.9783	0.5873	BCC INPUT
X											X	0.0936	1	0.0936	1.0000	0.5468	CCR INPUT
	Х								X			0.4410	7	0.4410	0.9565	0.6987	BCC OUTPUT
	X								X			0.1150	1	0.1150	1.0000	0.5575	CCR OUTPUT
	X								X			0.2245	7	0.2245	0.9565	0.5905	BCC INPUT

continua...

_	_			PU -			L			TPU'		EFICIÊNCIA	DMU's		<i>a</i>	~	ORIENTAÇÃO
	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S _{EF}	S _{DIS}	S	/MODELO
\neg	X								X			0.1150	1	0.1150	1.0000	0.5575	CCR INPUT
	X									X		0.1668	4	0.1668	0.9783	0.5725	BCC output
	X									X		0.0945	1	0.0945	1.0000	0.5473	CCR output
\rightarrow	X									X		0.1861	4	0.1861	0.9783	0.5822	BCC input
\neg	X									X		0.0945	1	0.0945	1.0000	0.5473	CCR input
-	X										X	0.2783	4	0.2783	0.9783	0.6283	BCC output
-	X										X	0.1017	1	0.1017	1.0000	0.5509	CCR output
\dashv	X										X	0.2081	4	0.2092	0.9783	0.5937	BCC input
_	X										X	0.1017	1	0.1017	1.0000	0.5509	CCR Input
_		X							X			0.6228	7	0.6228	0.9565	0.7897	BCC output
_		X							X			0.3390	1	0.3390	1.0000	0.6695	CCR output
_		X							X			0.5381	7	0.5381	0.9565	0.7473	BCC input
		X							X			0.3390	1	0.3390	1.0000	0.6695	CCR input
		X								X		0.1490	3	0.1490	0.9855	0.5673	BCC output
		X								X		0.1116	1	0.1116	1.0000	0.5558	CCR output
		X								X		0.2599	3	0.2599	0.9855	0.6227	BCC input
		X								X		0.1116	1	0.1116	1.0000	0.5558	CCR input
		X									X	0.2030	4	0.2030	0.9783	0.5906	BCC output
		X									X	0.0804	1	0.0804	1.0000	0.5402	CCR output
		X									X	0.2101	4	0.2101	0.9783	0.5942	BCC input
		X									X	0.0804	1	0.0804	1.0000	0.5402	CCR input
			х						X			0.4371	6	0.4371	0.9638	0.7004	BCC output
			х						X			0.0652	1	0.0652	1.0000	0.5326	CCR output
			X						X			0.1669	8	0.1669	0.9493	0.5581	BCC input
			X						X			0.0652	1	0.0652	1.0000	0.5326	CCR input
			X							Х		0.1226	3	0.1226	0.9855	0.5541	BCC output
			х							Х		0.0410	1	0.0410	1.0000	0.5205	CCR output
			х							Х		0.0951	5	0.0951	0.9710	0.5331	BCC input
			X							Х		0.0410	1	0.0410	1.0000	0.5205	CCR input
			х								Х	0.2381	4	0.2381	0.9783	0.6082	BCC output
			х								X	0.0573	1	0.0573	1.0000	0.5287	CCR output
			х								Х	0.1527	6	0.1527	0.9638	0.5582	BCC input
			х								Х	0.0573	1	0.0573	1.0000	0.5287	CCR input
\exists				Х			Ì		X			0.5221	6	0.5221	0.9638	0.7429	BCC output
\forall				X					X			0.0860	1	0.0860	1.0000	0.5430	CCR output
\exists		1		X					X			0.3102	6	0.3102	0.9638	0.6370	BCC input
\forall				X					X			0.0860	1	0.0860	1.0000	0.5430	CCR input
\dashv		1		X			T			Х		0.1391	3	0.1391	0.9855	0.5623	BCC output
\exists				X						X		0.0955	1	0.0955	1.0000	0.5477	CCR output
\dashv				X						X		0.1384	3	0.0333	0.9855	0.5620	BCC input
\dashv												0.1364	1	0.0955	0.9855	0.5405	CCR input
		x x				Λ		0.0933	1	0.0333	0.7655	0.5405	continua				

continua...

				N T	TC				OT!		DC.						
_	•		INI				Τ_			TPU'		EFICIÊNCIA	DMU's	G	G	G.	ORIENTAÇÃO
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA 0.2115	FRONTEIRA	S _{EF} 0.2115	S _{DIS} 0.9783	S 0.5040	/MODELO
				X							X	0.2115	1	0.2115		0.5949	BCC output
				X							X	0.1187	4	0.1187	1.0000 0.9783	0.5594 0.5628	CCR output BCC input
				X							X	0.1474	1	0.1474	1.0000	0.5594	CCR input
				X							X						1
					X				X			0.4557	6	0.4557	0.9638	0.7097	BCC output
					X				X			0.0215	1	0.0215	1.0000	0.5107	CCR output
					X				X			0.1651	6	0.1651	0.9638	0.5644	BCC input
					X				X			0.0215	1	0.0215	1.0000	0.5107	CCR input
					X					X		0.1972	4	0.1972	0.9783	0.5877	BCC output
					X					X		0.0395	1	0.0395	1.0000	0.5197	CCR output
					X					X		0.1166	4	0.1166	0.9783	0.5474	BCC input
					X					X		0.0395	1	0.0395	1.0000	0.5197	CCR input
					X						X	0.2576	4	0.2576	0.9783	0.6179	BCC output
					X						X	0.0208	1	0.0208	1.0000	0.5104	CCR output
					X						X	0.0964	4	0.0964	0.9783	0.5373	BCC input
_					X						X	0.0208	1	0.0208	1.0000	0.5104	CCR input
						X			X			0.4561	8	0.4561	0.9493	0.7027	BCC output
_						X			X			0.1747	1	0.1747	1.0000	0.5874	CCR output
						X			X			0.2389	8	0.2389	0.9493	0.5941	BCC input
						X			X			0.1747	1	0.1747	1.0000	0.5874	CCR input
						X				X		0.1807	4	0.1807	0.9783	0.5795	BCC output
						X				X		0.0963	1	0.0963	1.0000	0.5482	CCR output
						X				X		0.1559	4	0.1559	0.9783	0.5671	BCC input
						X				X		0.0963	1	0.0963	1.0000	0.5482	CCR input
						X					X	0.3198	4	0.3198	0.9783	0.6490	BCC output
_						X					X	0.1234	1	0.1234	1.0000	0.5617	CCR output
						X					X	0.2158	4	0.2158	0.9783		BCC input
						X					X	0.1234	1	0.1234	1.0000	0.5617	CCR input
							X		X			0.4363	6	0.4363	0.9638	0.7000	BCC output
							X		X			0.0592	1	0.0592	1.0000	0.5296	CCR output
							X		X			0.1822	8	0.1822	0.9493	0.5657	BCC input
							X		X			0.0592	1	0.0592	1.0000	0.5296	CCR input
							X			X		0.1704	4	0.1704	0.9783	0.5743	BCC output
							X			X		0.1071	1	0.1071	1.0000	0.5536	CCR output
							X			X		0.1581	6	0.1581	0.9638	0.5609	BCC input
							X			X		0.1071	1	0.1071	1.0000	0.5536	CCR input
							X				X	0.2839	4	0.2839	0.9783	0.6311	BCC output
							X				X	0.1061	1	0.1061	1.0000	0.5531	CCR output
							X				X	0.2191	6	0.2191	0.9638	0.5914	BCC input
							X				X	0.1061	1	0.1061	1.0000	0.5531	CCR input
								X	X			0.5520	5	0.5520	0.9710	0.7615	BCC output
																	continua

continua...

			IN	PU	TS				OU'	TPU'	ΓS	EFICIÊNCIA	DMU's				ORIENTAÇÃO
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S	/MODELO
								X	x			0.3423	1	0.3423	1.0000	0.6712	CCR output
								X	X			0.4651	5	0.4651	0.9710	0.7180	BCC input
								X	X			0.3423	1	0.3423	1.0000	0.6712	CCR input
								x		X		0.1580	4	0.1580	0.9783	0.5682	BCC output
								X		X		0.1309	1	0.1309	1.0000	0.5655	CCR output
								X		X		0.2345	4	0.2345	0.9783	0.6064	BCC input
								Х		X		0.1309	1	0.1309	1.0000	0.5655	CCR input
								х			X	0.2035	4	0.2035	0.9783	0.5909	BCC output
								Х			X	0.1078	1	0.1078	1.0000	0.5539	CCR output
								Х			X	0.2003	4	0.2003	0.9783	0.5893	BCC input
								х			Х	0.1078	1	0.1078	1.0000	0.5539	CCR input
																Maior S	0.8134

Fonte: Elaboração do autor

Prosseguindo com o emprego do método, compara-se a inclusão da terceira variável, com a orientação ao produto e o modelo BCC, de acordo com a tabela 25.

Tabela 25: Seleção da terceira variável – método multicritério combinatório por cenários

			IN.	PU	TS)			OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S
X	X								X			0.6719	11	0.6719	0.9275	0.7997
X		X							X			0,7058	12	0.7058	0.9203	0.8130
X			X						X			0,7032	13	0.7032	0.9130	0.8081
X				x					X			0.7071	12	0.7071	0.9203	0.8137
X					X				X			0.6762	12	0.6762	0.9203	0.7983
X						X			X			0.6833	11	0.6833	0.9275	0.8054
X							x		х			0.6834	13	0.6834	0.9130	0.7982
X								x	Х			0.6690	6	0.6690	0.9638	0.8164
X									X	X		0.6978	10	0.6978	0.9348	0.8163
X									X		X	0.6926	9	0.6926	0.9420	0.8173
-	•		•	•		•	•	•							Major S	0.8173

Fonte: Elaboração do autor

Estabeleceu-se as variáveis *input* 1 e *output* 1 e 3, isto é, número de estabelecimentos e número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária

municipal. Continuando com a utilização do método, inclui-se a quarta variável, com a orientação ao produto e o modelo BCC, de acordo com a tabela 26.

Tabela 26: Seleção da quarta variável – método multicritério combinatório por cenários

			IN	PU	TS	}			OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S _{EF}	S _{DIS}	S
X	x								X		X	0.7105	14	0.7105	0.9058	0.8081
X		X							X		X	0.7289	17	0.7289	0.8841	0,8065
X			X						X		X	0.7492	19	0.7492	0.8696	0.8094
X				X					X		X	0.7427	15	0.7427	0.8986	0.8206
X					х				X		X	0.7235	16	0.7235	0.8913	0.8074
X						X			X		X	0.7356	15	0.7356	0.8986	0.8171
X							х		X		X	0.7270	18	0.7270	0.8768	0.8019
X								X	X		X	0.7025	10	0.7025	0.9348	0.8186
X	x x x x 0.7116 12 0.7116													0.7116	0.9203	0.8159
														Maior S	0.8206	

Fonte: Elaboração do autor

Introduz-se as variáveis *input* 1 e *input* 5 e *output* 1 e 3, assim, compõem-se com o número de estabelecimentos e número de estabelecimentos que realizaram investimento, como os *inputs* e número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal como *outputs*, por possuírem o maior valor de S. Progredindo com a utilização do método, inclui-se a quinta variável, com a orientação ao produto e o modelo BCC, consoante a tabela 27.

Tabela 27: Seleção da quinta variável – método multicritério combinatório por cenários

			IN	PU	TS	}			OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S
X	x			X					X		X	0.755660	21	0.7557	0.8551	0.8054
X		X		X					X		X	0.758588	19	0.7586	0.8696	0.8141
X			x	X					X		X	0.756185	20	0.7562	0.8623	0.8093
X				X	х				X		X	0.757867	21	0.7579	0.8551	0.8065
X				X		х			X		X	0.772796	22	0.7728	0.8478	0.8103
X				X			х		X		X	0.764756	19	0.7648	0.8696	0.8172
X				X				x	X		X	0.749155	16	0.7492	0.8913	0.8202
X				х					X	X	X	0.763237	21	0.7632	0.8551	0.8092
														Maior S	0.8202	

Fonte: Elaboração do autor

Determinaram-se as variáveis *input* 1, *input* 5 e *input* 9 e *output* 1 e 3, isto é, número de estabelecimentos que obtiveram receita e pessoal ocupado como *inputs* e número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal como *outputs*, por conceberem o maior valor de S. Evoluindo com a utilização do método, inclui-se a sexta variável, com a orientação ao produto e o modelo BCC, consoante a tabela 28.

Tabela 28: Seleção da sexta variável - método multicritério combinatório por cenários

			IN	PU	TS	5			OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S
X	x			X				X	X		X	0.7605	22	0.7605	0.8478	0.8042
X		X		X				X	X		X	0.7851	25	0.7851	0.8261	0.8056
X			X	X				X	X		X	0.7909	27	0.7909	0.8116	0.8012
X				X	X			X	X		X	0.7616	21	0.7616	0.8551	0.8083
X				x		X		x	X		X	0.7704	20	0.7704	0.8623	0.8164
X				X			х	X	X		X	0.7747	25	0.7747	0.8261	0.8004
X				х				X	X	X	X	0.7705	23	0.7705	0.8406	0.8055
															Maior S	0.8164

Fonte: Elaboração do autor

Introduz-se as variáveis *input* 1, *input* 5, *input* 7 e *input* 9 e *output* 1 e *output* 3, assim, compõem-se com o número de estabelecimentos, número de estabelecimentos que realizaram investimento, valor das despesas e pessoal ocupado nos estabelecimentos como os *inputs* e

número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal como *outputs*, por terem o maior valor de S. Dando continuidade à aplicação do método, introduz-se a sétima variável, com a orientação ao produto e o modelo BCC, como exposto na tabela 29.

Tabela 29: Seleção da sétima variável - método multicritério combinatório por cenários

			IN	PU	TS				OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S _{EF}	S_{DIS}	S
X	X			X		X		X	X		X	0.7784	25	0.7784	0.8261	0.8022
X		X		X		X		X	X		X	0.8119	34	0.8119	0.7609	0.7864
X			X	X		X		X	X		X	0.8149	33	0.8149	0.7681	0.7915
X				x	x	X		x	X		X	0.7788	24	0.7788	0.8333	0.8061
X				X		X	X	X	X		X	0.7840	27	0.7840	0.8116	0.7978
X				х		X		Х	X	Х	Х	0.7971	27	0.7971	0.8116	0.8043
															Maior S	0.8061

Fonte: Elaboração do autor

Ao estabelecermos o acréscimo de mais uma variável, chegamos à sétima, sendo o grupo de *inputs* e *outputs* com o maior S, foram: *input* 1, *input* 5, *input* 6, *input* 7 e *input* 9 e *output* 1 e *output* 3, assim, compõem-se com o número de estabelecimentos, número de estabelecimentos que realizaram investimento, Valor do investimento, Valor da despesa e pessoal ocupado como os *inputs* e número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal como *outputs*. Com a inserção da oitava variável, procedemos à etapa seguinte, sempre com a orientação ao produto e o modelo BCC, como ilustrado com a tabela 30.

Tabela 30: Seleção da oitava variável - método multicritério combinatório por cenários

			IN	PU	TS				OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S _{DIS}	S
X	x			x	x	x		x	X		X	0,7863	28	0,7863	0,8043	0,7953
X		X		X	X	х		X	X		X	0,8199	38	0,8199	0,7319	0,7759
X			X	X	X	х		X	X		X	0,8225	37	0,8225	0,7391	0,7808
X				x	X	х	X	X	X		Х	0,7927	31	0,7927	0,7826	0,7877
X				X	х	х		X	X	X	X	0,8091	36	0,8091	0,7464	0.7777
															Maior S	0.7953

Fonte: Elaboração do autor

A utilização da oitava variável no método determina que os *inputs*: 1, 2, 5, 6, 7 e 9, combinados com os *outputs*: 1 e 3, possuem o maior S. Dessa forma, compõem-se com o número de estabelecimentos, área dos estabelecimentos, número de estabelecimentos que realizaram investimento, valor do investimento, valor da despesa e pessoal ocupado como os *inputs* e número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal como *outputs*. Em continuação com o método multicritério combinatório por cenários, acrescentamos mais uma variável e chegamos à nona, com a orientação ao produto e o modelo BCC, como podemos verificar na tabela 31.

Tabela 31: Seleção da nona variável – método multicritério combinatório por cenários

			IN	PU	TS				OU	TPU	JTS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S
X	x	X		X	X	X		X	X		X	0,8321	45	0,8321	0,6812	0,7566
X	X		X	X	X	X		X	X		X	0,8354	45	0,8354	0,6812	0.7583
X	X			X	X	X	x	X	X		X	0,7983	35	0,7983	0,7536	.07760
X	х			X	X	X		X	X	X	X	0,8166	40	0,8166	0,7174	0.7670
															Maior S	0.7760

Fonte: Elaboração do autor

Com a inserção da nona variável, o método estabeleceu com maior S a combinação dos seguintes *inputs* e *outputs* respectivamente: 1, 2, 5, 6, 7, 8 e 9 e 1 e 3. Isto é, formam-se com o número de estabelecimentos, área dos estabelecimentos, número de estabelecimentos que realizaram investimento, valor do investimento, valor da despesa, número de tratores e pessoal ocupado como os *inputs* e número de estabelecimentos que obtiveram receita e

Produto Interno Bruto da agropecuária municipal como *outputs*. Avançamos para a etapa seguinte, onde acrescentaremos a décima variável, a orientação ao produto e o modelo BCC, de acordo com a tabela 32.

Tabela 32: Seleção da décima variável – método multicritério combinatório por cenários

INPUTS OUTPUTS EFICIÊNCIA DMU's																
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S _{EF}	S_{DIS}	S
X	X	X		X	X	X	X	X	X		X	0,8424	50	0,8424	0.6449	0.7437
X	x		x	x	x	x	x	x	X		X	0,8392	47	0.8392	0.6667	0.7529
X	х			X	х	х	х	х	X	X	Х	0,8286	47	0.8286	0.6667	0.7476
															Maior S	0.7529

Fonte: Elaboração do autor

O estabelecimento da décima variável apresenta como maior valor de S, a combinação dos *inputs*: 1, 2, 4, 5, 6, 7 e 9 e *outputs*: 1 e 3, representado pelas variáveis: número de estabelecimentos, área dos estabelecimentos, estabelecimento com orientação técnica, número de estabelecimentos que realizaram investimento, valor do investimento, valor da despesa, número de tratores e pessoal ocupado como os *inputs* e número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal como *outputs*. Em continuação ao método, mais uma variável será inserida, a décima primeira, sendo a orientação ao produto e o modelo BCC, tabela 33.

Tabela 33: Seleção da décima primeira variável – método multicritério combinatório por cenários

	INPUTS OUTPUTS EFICIÊNCIA DMU's															
1	2	3	4	5	6	7	8	9	1	2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S
X	X	X	X	X	X	X	X	X	X		X	0,8753	63	0,8753	0,5507	0,7130
X	X		X	x	x	x	x	x	X	X	X	0,8635	58	0,8635	0,5870	0,7252
															Major S	0.7252

Fonte: Elaboração do autor

O emprego da décima primeira variável destaca como maior valor de S a combinação dos *inputs*: 1, 2, 4, 5, 6, 7, 8 e 9 e *outputs*: 1, 2 e 3, representado pelas variáveis: número de estabelecimentos , área dos estabelecimentos, orientação técnica , número de estabelecimentos

que realizaram investimento, valor do investimento, valor da despesa, número de tratores e pessoal ocupado como os *inputs* e número de estabelecimentos que obtiveram receita, valor da receita e Produto Interno Bruto da agropecuária municipal como *outputs*. Por fim, o método estará completo com a execução de todas as variáveis apresentadas inicialmente, novamente com a orientação ao produto e o modelo BCC, em relevo na tabela 34.

Tabela 34: Seleção da décima segunda primeira variável – método multicritério combinatório por cenários

			IN.	PU	TS				OU	TPU	TS	EFICIÊNCIA	DMU's			
1	2	3	4	5	6	7		9		2	3	MÉDIA	FRONTEIRA	S_{EF}	S_{DIS}	S
X	X	X	X	x	x	x	X	X	X	X	X	0,8933	72	0,8933	0.4855	0.6894

Fonte: Elaboração do autor

O método multicritério combinatório por cenários, aponta como as variáveis a serem adotadas na mensuração da eficiência, o cenário com o maior S (0,8206), composto pelos *inputs* 1 (Número de estabelecimentos) e 5 (Número de estabelecimentos que realizaram investimento) e *outputs* 1(Número de estabelecimentos que obtiveram receita) e 3 (Produto Interno Bruto da agropecuária municipal), com 15 DMU's na fronteira de eficiência, orientado ao produto e o modelo BCC. O segundo maior S (0,8202) foi composto pelos *inputs*: 1, 5 e 9 e *outputs*: 1 e 3, ou seja, neste caso acrescentou-se o pessoal ocupado (*input* 9), que acarretou, também mais uma DMU na fronteira de eficiência, total 16, com orientação ao produto e o modelo BCC.

Embora o método apresente o cenário com a utilização dos *inputs* 1 e 5 e os *outputs* 1 e 3 como mais adequados, mas considerando também respaldo, Senra *et al* (2007), na literatura DEA, pela capacidade do especialista e do decisor em retirar e/ou incluir variáveis, optamos pela inserção do *input* 9 (pessoal ocupado) na mensuração da eficiência, dado que a diferença da média S, foi de apenas (0,0004) e o acréscimo de DMU na fronteira restringiu-se a 1 unidade e, por fim, pela necessidade de melhor entendermos o papel da mão-de-obra na eficiência da agropecuária, resolvemos inserir a variável.

Em relação ao método, Senra *et al* (2007) aborda as suas principais vantagens e desvantagens

Vantagens: 1) Possibilita uma eficiência média relativamente alta com boa capacidade de ordenação, através de uma poderação entre a capacidade discriminatória e a eficiência média do modelo; 2) Independe da opinião do decisor para a escolha do par inicial, que é obtido pelo mesmo processo de ponderação supracitado; 3) Desde o par inicial, apresenta eficiência média relativamente alta; 4) Seleciona um cenário próximo ao modelo completo. Desvantagens: 1) Pode não chegar a uma eficiência média elevada; 2) Para instâncias com grande número de DMU's e variáveis, exige um custo de cálculo elevado (SENRA *et al*, 2007, p. 205).

Pelos resultados apresentados, o método utilizado atingiu seu intuito de estabelecer uma alta eficiência média, boa ordenação das DMU's e sem maiores prejuízos na relação causal.

3.5 Identificação e aplicação dos modelos

Os modelos DEA mais usuais são o CCR e o BCC. Nesse sentido foi programado para a mensuração de ambos os modelos e orientação. Mello *et al* (2005) destaca que, ao optarmos por um modelo, definimos

As propriedades implícitas dos retornos de escala; a geometria da superfície de envelopamento dos dados, que tem relação com as medidas de eficiência; as projeções de eficiência, ou seja, o caminho das DMU's ineficientes até a fronteira de eficiência (MELLO *et al*, 2005, p. 2535).

Em relação aos modelos, Mello et al (2005) destaca algumas das suas particularidades:

Em qualquer modelo DEA, cada DMU escolhe seu próprio conjunto de pesos, de modo que apareça o melhor possível em relação às demais. Dessa forma, cada DMU pode ter um conjunto de pesos (multiplicadores) diferente; Todos os modelos são invariantes com a escala de medida, isto é, usar como variável, por exemplo, a área plantada de uma determinada cultura em km2, m2 ou hectares não afeta o resultado; Em qualquer modelo DEA, a DMU que apresentar a melhor relação (output j) (input i) será sempre eficiente; Pré escolha das variáveis, ou seja, identificar quais variáveis poderão compor o modelo. A decisão se elas entrarão efetivamente no modelo depende de uma segunda análise, mais aprofundada; O modelo CCR tem como propriedade principal a proporcionalidade entre inputs e outputs na fronteira, ou seja, o aumento (decremento) na quantidade dos inputs, provocará acréscimo (redução) proporcional no valor dos outputs. No modelo BCC, a DMU que tiver o menor valor de um determinado input ou o menor valor de um certo output será eficiente. A esta DMU chamamos de eficiente por default ou eficiente à partida; O

modelo BCC é invariante a translações a *outputs* quando é orientado a *inputs* e viceversa (MELLO *et al*, 2005, p. 2536)

Ao utilizarmos a seleção das variáveis, com a adoção do método multicritério combinatório por cenários, este validou o uso do modelo BCC com orientação ao produto. Devemos ressaltar que o modelo BCC, como destacado anteriormente no referencial teórico, possui um princípio mais realista de retornos variáveis de escala em contraposição com os retornos constantes de escala do modelo CCR e, em relação à orientação, partimos do pressuposto que o município, como DMU, deve utilizar seus fatores produtivos para produzir o máximo possível com os escassos recursos.

A mensuração do modelo CCR, também será considerada muito em função da aplicação do Índice de Malmquist, pois, como destacado no referencial teórico, as particularidades dos retornos constantes de escala são mais importantes para medida da produtividade total dos fatores, enquanto os retornos variáveis de escala podem ocasionar problemas.

Os modelos complementares DEA serão utilizados para melhor entendimento da dinâmica da agropecuária nos municípios tocantinenses, como os modelos: fronteira invertida, FDH, bem como, a determinação das folgas, alvos e benchmarks para as DMU's.

3.6 Recursos computacionais

A DEA, por seu uso cada vez mais disseminado, variedades de modelos, dados e tipos de análises, encontra opções avançadas de programas computacionais, no âmbito acadêmico e comercial, com interfaces gráficas, interação com outros programas e a capacidade crescente de analisar de forma rápida e precisa um número expressivo de DMU's. De forma sucinta, apresentaremos alguns programas disponíveis e suas principais características e, em relevo os dois aplicativos utilizados na confecção desta dissertação.

São os seguintes alguns dos principais programas para a resolução de DEA e Malmquist:

• EMS 1.3 (*Efficiency Measurement System*): desenvolvido por H. Scheel, Universidade de Dortmund, Alemanha, sua versão *freeware*, com acesso eletrônico no endereço: www.wiso.uni-dortmund.de/lsfg/or/scheel/ems/;

- Frontier analysis: desenvolvido por Banxia software Ltd. Glasgow. Seus valores variam de £ 695 (R\$ 2.150,00) a £ 3.995 (R\$ 12.400,00) na sua versão comercial. Na versão acadêmica, os valores oscilam de £ 195 (R\$ 600,00) a £ 995 (R\$ 3.000,00). Informações detalhadas podem ser acessadas no endereço eletrônico: www.banxia.com/frontier, o aplicativo possui interface amigável e ambiente gráfico avançado;
- DEAP 2.1 (*Data Envelopment Analysis (Computer) Program*): desenvolvido por Tim Coelli. Todos os métodos estão disponíveis, bem como sua orientação e também a mensuração do Índice de Malmquist, informações detalhadas, no endereço eletrônico: http://www.uq.edu.au/economics/cepa/deap.php;
- DEAFrontier: Desenvolvido por Joe Zhu. Usa o Solver do Excel (Microsoft), possui uma versão gratuita e vendida, sendo a acadêmica US\$ 669 (R\$ 1.350,00) até a comercial por US\$ 2.559 (R\$ 5.150,00), outras informações: http://www.deafrontier.net/;
- PIM-DEAsoft V3: desenvolvido por A. Emrouznejad e E. Thanassoulis, as funcionalidades do aplicativo são amplas, uso compatível com o Excel, interface gráfica amigável, seus valores podem chegar até £ 175 (R\$ 550,00) na versão acadêmica e £ 350 (R\$ 1.085,00) na versão comercial. Detalhes podem ser acessados: www.deasoftware.co.uk;
- Outros programas como: DEA Solver e DEA Excel Solver, podem ser acessados respectivamente nos endereços: www.saitech-inc.com e www.deafrontier.com.

O Sistema Integrado de Apoio à Decisão (SIAD), versão 3.0 é utilizado na plataforma Windows, permite trabalhar com até 150 DMU's e 10 variáveis entre insumos e produtos. No nosso caso, usamos até 12 variáveis, sem qualquer problema. O número de 150 DMU's, para Meza *et al* (2003), representa um número de grande porte e devido às próprias características da DEA, um número significativo de variáveis enfraquece seu poder discriminatório. O aplicativo permite a entrada de duas formas: diretamente ou por aquivo com extensão *.txt, por isso cada arquivo em planilha Excel é posteriormente gravado e apresentado em formato *.txt de tal maneira que possibilite o programa realizar sua leitura.

No programa, além dos métodos mais usuais CCR e BCC é possível utilizar recursos adicionais em DEA como a fronteira invertida, os pesos das variáveis, os *benchmarks* e os alvos para as DMU's. O Programa SIAD pode ser acessado sem custos no endereço eletrônico: www.uff.br/decisao.

O DEA-SAED, *software* de Análise Envoltória de Dados é para Surco e Wilhelm (2006) para avaliação da eficiência técnica e produtividade baseada em DEA, com interface amigável e uma grande gama de modelos, com resultados confiáveis e com riqueza de detalhes. A inserção de dados pode ser direta ou utilizando dados no formato *.txt, os modelos aditivos podem ser verificados no programa, bem como a mensuração do Índice de Malmquist. Trata-se de *software* livre, que pode ser obtido solicitado no correio eletrônico: douglasfukunaga@hotmail.

A escolha dos dois programas foi incentivada inicialmente por se tratar de *softwares* livres, mas ao conhecê-los de forma detalhada, se verificou que possuem uma capacidade de manipulação de dados e análise de resultados consideravelmente simplificados em relação aos demais aplicativos aqui expostos, recursos superiores aos demais. Naquilo que são diferentes entre si, foram complementares para se responder as indagações aqui solicitadas.

No presente capítulo, foi apresentada a metodologia de pesquisa, a base de dados, a seleção de DMU, a seleção de variáveis, com a aplicação do método multicritério combinatório por cenários, a identificação e aplicação dos modelos e, por fim, os recursos computacionais utilizados. No próximo capítulo, apresentam-se e analisam-se os resultados alcançados, após a utilização dos procedimentos metodológicos, postos aqui em evidência.

CAPÍTULO IV

4. ANÁLISE DOS RESULTADOS

O quarto capítulo apresenta e analisa os resultados da aplicação do modelo DEA-BCC orientado a *output* e o Índice de Malmquist, sendo utilizado para a análise de eficiência os *inputs*: número de estabelecimentos, número de estabelecimentos que realizaram investimentos e pessoal ocupado, e como *outputs*: número de estabelecimentos que obtiveram receita e Produto Interno Bruto da agropecuária municipal, de todos os municípios do Estado do Tocantins, no período de 1995/96 e 2006, conforme os dados dos censos agropecuários.

4.1 Análise da Eficiência Técnica

A metodologia DEA objetiva calcular a eficiência relativa das DMU's conexa com os seus fatores de produção, ou seja, seus *inputs* e *outputs* empregados. Deve-se destacar, entretanto, que não significa dizer que determinada DMU conceituada como tecnicamente eficiente não necessite, possivelmente, de aperfeiçoamento do seu processo produtivo, visto que sua mensuração é relacionada a determinado conjunto de DMU's avaliadas, no presente caso, os municípios do Estado do Tocantins. Por oportuno, o município que auferir indicador de eficiência igual a 01 (um) é considerado como eficiente na aplicação dos seus fatores de produção e estão na fronteira de eficiência.

A análise da eficiência técnica utilizando o método DEA-BCC orientado a *output*, possibilitou distinguir os municípios eficientes dos ineficientes, assim como, apresentar oportunidades aos municípios ineficientes de melhoria da sua capacidade produtiva, sem adição na utilização dos *inputs*, com o devido conhecimento dos seus *benchmarks*.

4.1.1 Análise da eficiência técnica 1995/96

A análise da eficiência técnica dos municípios tocantinenses em 1995/96, apresenta inicialmente uma característica importante: esses municípios possuíam elevada eficiência técnica média, 0,974. As DMU's eficientes no modelo clássico DEA-BCC orientado a *output* totalizavam 34 e as ineficientes computavam 89, ou seja, 38,20% dos municípios eram eficientes tecnicamente, como é possível ser observado na tabela 35.

Tabela 35: Eficiência Técnica, DEA-BCC orientação output -1995/96

	Tabela 33. Efficiencia Tech	EFICIÊNCIA			
DMU		PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu1	Abreulândia	0.995122	0.955781	0.519671	0.904978
dmu2	Aliança do Tocantins	0.934844	0.957938	0.488453	0.850615
dmu3	Almas	0.919255	0.972073	0.473591	0.824733
dmu4	Alvorada	0.975535	0.907887	0.533824	0.929626
dmu5	Ananás	0.988890	0.893105	0.547893	0.954126
dmu6	Angico	0.994083	0.863067	0.565508	0.984802
dmu7	Aparecida do Rio Negro	0.960000	0.950991	0.504505	0.878568
dmu8	Aragominas	0.949832	0.928446	0.510693	0.889345
dmu9	Araguacema	1.000000	0.881950	0.559025	0.973513
dmu10	Araguaçu	0.978385	0.936338	0.521024	0.907335
dmu11	Araguaína	0.967518	0.971441	0.498038	0.867307
dmu12	Araguanã	1.000000	0.936544	0.531728	0.925976
dmu13	Araguatins	0.992689	1.000000	0.496344	0.864357
dmu14	Arapoema	0.965885	0.984192	0.490846	0.854783
dmu15	Arraias	0.928990	0.980775	0.474108	0.825633
dmu16	Augustinópolis	0.985975	0.907517	0.539229	0.939038
dmu17	Aurora do Tocantins	0.978852	0.976014	0.501419	0.873195
dmu18	Axixá do Tocantins	1.000000	0.888124	0.555938	0.968136
dmu19	Babaçulândia	0.999540	1.000000	0.499770	0.870322
dmu20	Barrolândia	0.977564	0.894022	0.541771	0.943465
dmu21	Bernardo Sayão	0.987633	0.951397	0.518118	0.902275
dmu22	Bom Jesus do Tocantins	1.000000	0.898563	0.550718	0.959047
dmu23	Brasilândia do Tocantins	1.000000	0.880959	0.559521	0.974375
dmu24	Brejinho de Nazaré	0.957237	0.917436	0.519901	0.905379
dmu25	Buriti do Tocantins	0.889961	0.964303	0.462829	0.805993
dmu26	Cachoeirinha	1.000000	1.000000	0.500000	0.870723

DMU MUNICÍPIO PADRÃO INVERTIDA COMPOSTA COMPOSTA dmu27 Campos Lindos 0.995772 0.902676 0.546548 0.951784 dmu28 Cariri do Tocantins 0.975000 0.902064 0.536468 0.934230 dmu29 Carrasco Bonito 1.000000 1.000000 0.560341 0.989736 dmu31 Cascara 0.935780 1.000000 0.467890 0.814805 dmu32 Centenário 1.000000 0.979603 0.510199 0.888484 dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.977847 1.000000 0.482474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490			EFICIÊNCIA	S		
dmu27 Campos Lindos 0.995772 0.902676 0.546548 0.951784 dmu28 Cariri do Tocantins 0.975000 0.902064 0.536468 0.934230 dmu29 Carmolândia 1.000000 1.000000 0.500000 0.870723 dmu30 Carrasco Bonito 1.000000 0.863317 0.568341 0.989736 dmu31 Caseara 0.935780 1.000000 0.467890 0.814805 dmu32 Centenário 1.000000 0.979603 0.510199 0.888484 dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.978947 1.000000 0.488474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Dianópolis 0.987342 0.953377 0.522056 0.999133 dmu39 Dianópolis 0.944984	DMU	MUNICÍPIO			COMPOSTA	COMPOSTA*
dmu28 Cariri do Tocantins 0.975000 0.902064 0.536468 0.934230 dmu29 Carmolândia 1.000000 1.000000 0.500000 0.870723 dmu30 Carrasco Bonito 1.000000 0.863317 0.568341 0.989736 dmu31 Caseara 0.935780 1.000000 0.467890 0.814805 dmu32 Centenário 1.000000 0.979603 0.510199 0.888484 dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.978947 1.000000 0.488474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu39 Dianópolis 0.985507 0.910605 0.537451 0.935843 dmu43 Discripantina 0.920673						
dmu30 Carrasco Bonito 1.000000 0.863317 0.568341 0.989736 dmu31 Caseara 0.935780 1.000000 0.467890 0.814805 dmu32 Centenário 1.000000 0.979603 0.510199 0.888484 dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.978947 1.000000 0.482474 0.85239 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu39 Dianópolis 0.985507 0.910605 0.537451 0.935943 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.9985930 1.000000 0.497915 0.867092 dmu42 Dueré 0.985		_				
dmu31 Caseara 0.935780 1.000000 0.467890 0.818485 dmu32 Centenário 1.000000 0.979603 0.510199 0.888484 dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.978947 1.000000 0.489474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.990133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.926673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596	dmu29	Carmolândia	1.000000	1.000000	0.500000	0.870723
dmu32 Centenário 1.000000 0.979603 0.510199 0.888484 dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.978947 1.000000 0.489474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.93534 dmu49 Divinópolis do Tocantins 0.9944984 0.959224 0.492880 0.85324 dmu40 Divinópolis do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina		Carrasco Bonito				0.989736
dmu33 Colinas do Tocantins 0.925678 1.000000 0.462839 0.806009 dmu34 Combinado 0.978947 1.000000 0.489474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.9920673 0.956895 0.481889 0.839184 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.90256 0.548872 0.955882 dmu44 Fátima 0.892377	dmu31	Caseara	0.935780	1.000000	0.467890	0.814805
dmu34 Combinado 0.978947 1.000000 0.489474 0.852392 dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955882 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897	dmu32	Centenário	1.000000	0.979603	0.510199	0.888484
dmu35 Conceição do Tocantins 0.865385 1.000000 0.432692 0.753511 dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.9920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadelfía <td< td=""><td>dmu33</td><td>Colinas do Tocantins</td><td>0.925678</td><td>1.000000</td><td>0.462839</td><td>0.806009</td></td<>	dmu33	Colinas do Tocantins	0.925678	1.000000	0.462839	0.806009
dmu36 Couto Magalhães 0.987342 0.955351 0.515995 0.898578 dmu37 Cristalândia 0.974490 0.930377 0.522056 0.909133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000	dmu34	Combinado	0.978947	1.000000	0.489474	0.852392
dmu37 Cristalândia 0.974490 0.930377 0.522056 0.99133 dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu42 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.55344 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 <td< td=""><td>dmu35</td><td>Conceição do Tocantins</td><td>0.865385</td><td>1.000000</td><td>0.432692</td><td>0.753511</td></td<>	dmu35	Conceição do Tocantins	0.865385	1.000000	0.432692	0.753511
dmu38 Darcinópolis 0.985507 0.910605 0.537451 0.935943 dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.993413 1	dmu36	Couto Magalhães	0.987342	0.955351	0.515995	0.898578
dmu39 Dianópolis 0.944984 0.959224 0.492880 0.858324 dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.527997 0.919478 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Guitains 0.998224	dmu37	Cristalândia	0.974490	0.930377	0.522056	0.909133
dmu40 Divinópolis do Tocantins 0.920673 0.956895 0.481889 0.839184 dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Guitaria 0.99371 1.000000 0.468707 0.816227 dmu51 Guaraí 0.9952971 <	dmu38	Darcinópolis	0.985507	0.910605	0.537451	0.935943
dmu41 Dois Irmãos do Tocantins 0.995830 1.000000 0.497915 0.867092 dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.50000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.468707 0.816227 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707	dmu39	Dianópolis	0.944984	0.959224	0.492880	0.858324
dmu42 Dueré 0.985596 0.976251 0.504673 0.878860 dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.468707 0.816227 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.993555 0.890500 0.5524	dmu40	Divinópolis do Tocantins	0.920673	0.956895	0.481889	0.839184
dmu43 Esperantina 1.000000 0.902256 0.548872 0.955832 dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.993455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.99355 0.884997 0.	dmu41	Dois Irmãos do Tocantins	0.995830	1.000000	0.497915	0.867092
dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.993620 0.905347 0.544137 0.947585 dmu54 Itaguatins 0.993355 0.884997 0.554179 0.965073 dmu55 Itapiratins 0.993355 0.884997 0	dmu42	Dueré	0.985596	0.976251	0.504673	0.878860
dmu44 Fátima 0.892377 1.000000 0.446188 0.777013 dmu45 Figueirópolis 0.958897 0.902904 0.527997 0.919478 dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.993620 0.905347 0.544137 0.947585 dmu54 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu55 Itaporã do Tocantins 1.000000 0.945008	dmu43	Esperantina	1.000000	0.902256	0.548872	0.955832
dmu46 Filadélfia 0.998619 0.891532 0.553544 0.963966 dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 </td <td>dmu44</td> <td>Fátima</td> <td></td> <td>1.000000</td> <td>0.446188</td> <td></td>	dmu44	Fátima		1.000000	0.446188	
dmu47 Formoso do Araguaia 1.000000 1.000000 0.500000 0.870723 dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.884705	dmu45	Figueirópolis	0.958897	0.902904	0.527997	0.919478
dmu48 Fortaleza do Tabocão 0.984733 1.000000 0.492366 0.857430 dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000	dmu46	Filadélfia	0.998619	0.891532	0.553544	0.963966
dmu49 Goianorte 0.983015 0.985613 0.498701 0.868461 dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 0.913546 0	dmu47	Formoso do Araguaia		1.000000		
dmu50 Goiatins 0.998224 1.000000 0.499112 0.869177 dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lajeado 1.000000 1.000000 0.543227 0.946001 dmu62 Lizarda 1.000000 0.913546 0.54	dmu48	Fortaleza do Tabocão	0.984733	1.000000	0.492366	0.857430
dmu51 Guaraí 0.937413 1.000000 0.468707 0.816227 dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu49	Goianorte	0.983015	0.985613	0.498701	0.868461
dmu52 Gurupi 0.952971 0.958707 0.497132 0.865729 dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.543227 0.946001 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu50	Goiatins	0.998224	1.000000	0.499112	0.869177
dmu53 Itacajá 0.995455 0.890500 0.552477 0.962110 dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu51	Guaraí	0.937413	1.000000	0.468707	0.816227
dmu54 Itaguatins 0.993620 0.905347 0.544137 0.947585 dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu52	Gurupi	0.952971	0.958707	0.497132	0.865729
dmu55 Itapiratins 0.993355 0.884997 0.554179 0.965073 dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu53	Itacajá	0.995455	0.890500	0.552477	0.962110
dmu56 Itaporã do Tocantins 1.000000 0.945008 0.527496 0.918606 dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu54	Itaguatins	0.993620	0.905347	0.544137	0.947585
dmu57 Jaú do Tocantins 0.966667 0.918011 0.524328 0.913089 dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu55	Itapiratins	0.993355	0.884997	0.554179	0.965073
dmu58 Juarina 1.000000 0.940308 0.529846 0.922698 dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu56	Itaporã do Tocantins	1.000000	0.945008	0.527496	0.918606
dmu59 Lagoa da Confusão 1.000000 0.884705 0.557648 0.971114 dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu57	Jaú do Tocantins	0.966667	0.918011	0.524328	0.913089
dmu60 Lagoa do Tocantins 0.982249 1.000000 0.491124 0.855267 dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu58	Juarina	1.000000	0.940308	0.529846	0.922698
dmu61 Lajeado 1.000000 1.000000 0.500000 0.870723 dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu59	Lagoa da Confusão	1.000000	0.884705	0.557648	0.971114
dmu62 Lizarda 1.000000 0.913546 0.543227 0.946001	dmu60	Lagoa do Tocantins	0.982249	1.000000	0.491124	0.855267
	dmu61	Lajeado	1.000000	1.000000	0.500000	0.870723
dmu63 Marianópolis do Tocantins 0.080206 1.000000 0.400148 0.853566	dmu62	Lizarda	1.000000	0.913546	0.543227	0.946001
0.980290 1.000000 0.490148 0.855500	dmu63	Marianópolis do Tocantins	0.980296	1.000000	0.490148	0.853566
dmu64 Mateiros 1.000000 0.851530 0.574235 1.000000	dmu64	Mateiros	1.000000	0.851530	0.574235	1.000000
dmu65 Maurilândia do Tocantins 0.989653 0.868436 0.560609 0.976270	dmu65	Maurilândia do Tocantins		0.868436	0.560609	
dmu66 Miracema do Tocantins 0.985023 0.912985 0.536019 0.933449	dmu66	Miracema do Tocantins	0.985023	0.912985	0.536019	0.933449

		EFICIÊNCIA	S		
DMU	MUNICÍPIOS	PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu67	Miranorte	0.992933	0.890087	0.551423	0.960274
dmu68	Monte do Carmo	0.987705	0.897703	0.545001	0.949090
dmu69	Palmeiras do Tocantins	0.972973	0.908021	0.532476	0.927279
dmu70	Muricilândia	0.911798	0.990551	0.460623	0.802151
dmu71	Natividade	0.937870	0.947372	0.495249	0.862450
dmu72	Nazaré	0.987676	0.953339	0.517168	0.900621
dmu73	Nova Olinda	1.000000	0.892170	0.553915	0.964614
dmu74	Nova Rosalândia	0.954128	0.942106	0.506011	0.881191
dmu75	Novo Acordo	0.928836	0.920800	0.504018	0.877720
dmu76	Novo Alegre	0.919746	0.926189	0.496779	0.865113
dmu77	Novo Jardim	0.839706	1.000000	0.419853	0.731152
dmu78	Palmeirante	0.969510	0.938081	0.515714	0.898089
dmu79	Palmeirópolis	0.971370	0.945076	0.513147	0.893619
dmu80	Paraíso do Tocantins	0.997886	0.893698	0.552094	0.961442
dmu81	Paranã	0.894309	1.000000	0.447154	0.778696
dmu82	Pau D'Arco	0.997368	0.981179	0.508095	0.884820
dmu83	Pedro Afonso	0.989865	0.921689	0.534088	0.930086
dmu84	Peixe	0.969730	0.956273	0.506728	0.882440
dmu85	Pequizeiro	0.965517	0.964393	0.500562	0.871703
dmu86	Colméia	0.975556	0.986120	0.494718	0.861524
dmu87	Pindorama do Tocantins	0.951899	0.923957	0.513971	0.895053
dmu88	Piraquê	1.000000	0.914032	0.542984	0.945578
dmu89	Pium	1.000000	0.929914	0.535043	0.931749
dmu90	Ponte Alta do Bom Jesus	0.981481	1.000000	0.490741	0.854599
dmu91	Ponte Alta do Tocantins	0.980180	0.921969	0.529106	0.921409
dmu92	Porto Alegre do Tocantins	0.989011	1.000000	0.494505	0.861155
dmu93	Porto Nacional	1.000000	0.891781	0.554109	0.964952
dmu94	Praia Norte	1.000000	1.000000	0.500000	0.870723
dmu95	Presidente Kennedy	1.000000	0.868473	0.565764	0.985247
dmu96	Recursolândia	1.000000	0.887325	0.556338	0.968832
dmu97	Riachinho	1.000000	0.871293	0.564353	0.982791
dmu98	Rio da Conceição	1.000000	1.000000	0.500000	0.870723
dmu99	Rio dos Bois	1.000000	0.889472	0.555264	0.966962
dmu100	Rio Sono	0.996119	0.917489	0.539315	0.939188
dmu101	Sampaio	0.991935	1.000000	0.495968	0.863701
dmu102	Sandolândia	0.995570	0.907856	0.543857	0.947097
dmu103	Santa Fé do Araguaia	0.986047	1.000000	0.493023	0.858574
dmu104	Santa Maria do Tocantins	1.000000	0.905151	0.547424	0.953310
dmu105	Santa Rosa do Tocantins	0.962264	0.941347	0.510458	0.888936
dmu106	Santa Tereza do Tocantins	0.979866	0.913758	0.533054	0.928285

		EFICIÊNCIA	S		
DMU	MUNICÍPIOS	PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu107	São Bento do Tocantins	0.902913	0.962166	0.470373	0.819130
dmu108	São Félix do Tocantins	1.000000	0.895456	0.552272	0.961753
dmu109	São Miguel do Tocantins	1.000000	0.893411	0.553294	0.963533
dmu110	São Salvador do Tocantins	0.848684	1.000000	0.424342	0.738969
dmu111	São Sebastião do Tocantins	1.000000	0.927495	0.536252	0.933855
dmu112	São Valério	0.937448	0.944661	0.496394	0.864443
dmu113	Silvanópolis	0.987500	0.951888	0.517806	0.901731
dmu114	Sítio Novo do Tocantins	1.000000	1.000000	0.500000	0.870723
dmu115	Sucupira	0.918129	0.962862	0.477633	0.831773
dmu116	Taguatinga	0.929108	1.000000	0.464554	0.808996
dmu117	Taipas do Tocantins	1.000000	0.968625	0.515688	0.898043
dmu118	Palmas	1.000000	0.904823	0.547589	0.953596
dmu119	Tocantínia	0.993289	0.871659	0.560815	0.976629
dmu120	Tocantinópolis	0.968858	0.918170	0.525344	0.914859
dmu121	Tupiratins	0.975861	0.871239	0.552311	0.961820
dmu122	Wanderlândia	0.999798	0.899678	0.550060	0.957900
dmu123	Xambioá	0.997686	0.863183	0.567251	0.987838

*Eficiência normalizada Fonte: Elaboração do autor

A avaliação das unidades *benchmarks* é importante para depurá-las, pois "se uma DMU foi considerada inicialmente eficiente pelo DEA, a análise de sensibilidade suplementar deve ser conduzida para checar o número de DMUs ineficientes para as quais ela foi considerada referência" (LAMERA, 2008, p. 115). Conclui-se que uma DMU que não é *benchmark* para as demais deve ser avaliada com precaução e, como medida para ampliar seu poder de distinção, convencionou-se nesta dissertação selecionar como eficiente somente as DMU's que foram designadas como *benchmark* para pelo menos outras duas DMU's.

Após esse refinamento depreende-se que 18 DMU's são eficientes: DMU 9 (Araguacema); DMU 12 (Araguanã); DMU 29 (Carmolândia); DMU 47 (Formoso do Araguaia); DMU 59 (Lagoa da Confusão); DMU 61 (Lajeado); DMU 64 (Mateiros); DMU 88 (Piraquê); DMU 89 (Pium); DMU 93 (Porto Nacional); DMU 94 (Praia Norte); DMU 96 (Recursolândia); DMU 99 (Rio dos Bois); DMU 108 (São Félix do Tocantins); DMU 109 (São Miguel do Tocantins); DMU 111 (São Sebastião do Tocantins); DMU 114 (Sítio Novo do Tocantins) e DMU 117 (Taipas do Tocantins).

Das 8 microrregiões do IBGE no Estado (ver figura 36), Araguaína possuía 3 municípios eficientes dos seus 17 municípios, isto é, 17,65% do seu composto; Bico do Papagaio, 4 eficientes (16,0%) do total de 25 municípios; Dianópolis, 1 eficiente de 20 municípios, 5% da microrregião; Gurupi, todos ineficientes; Jalapão, de 15 municípios da microrregião, 3 eram eficientes, ou seja, 20% da soma; Miracema do Tocantins, 2 eficientes (8,33%) do agregado de 24 municípios; Porto Nacional, com 2 municípios na fronteira de eficiência, dos seus 11 municípios, o que perfazia 18,18% do conjunto e Rio Formoso, 3 eficientes outros 10 ineficientes, portanto, 23,07% do total.

Constata-se, dessa forma, que não existe supremacia de um bloco de municípios eficientes em determinada microrregião do Estado; no entanto, na região do projeto Rio Formoso, os municípios de Formoso do Araguaia, Lagoa da Confusão e Pium foram eficientes. Deve-se destacar a predominância de municípios ineficientes nas microrregiões de Gurupi, (nenhum eficiente) e na microrregião de Dianópolis, pois dos seus 20 municípios somente 1 era eficiente.

Figura 36: Municípios eficientes e ineficientes do Estado do Tocantins, segundo as microrregiões – 1995/96

Fonte:Elaboração do autor

A aplicação da metodologia SBM, ao "considerar ao mesmo tempo tanto a possibilidade de redução dos insumos quanto o aumento da produção, baseado nas folgas de insumos e produtos" (FERREIRA e GOMES, 2009, p. 125) e com a supressão de excessos e folgas existentes na atividade, o número de DMU's na fronteira de eficiência diminuiu substancialmente, perfazendo 9 no somatório geral, ante 34 DMU's na fronteira da eficiência, no modelo DEA-BCC padrão orientado a *output* e a metade após o refinamento avaliando o número de *benchmarks necessários para* que uma DMU seja referência para as demais.

As DMU's eficientes de acordo com o SBM foram: DMU 12 (Araguacema), DMU 109 (São Miguel do Tocantins), DMU 59 (Lagoa da Confusão), DMU 93 (Porto Nacional), DMU 88 (Piraquê), DMU 89 (Pium), DMU 94 (Praia Norte), DMU 62 (Lizarda) e DMU 118 (Palmas). Deve-se destacar que a eficiência média decresceu de 0,974 (DEA-BCC) para 0,326 no tipo SBM, detalhes podem ser verificados no apêndice A.

Da análise das unidades tomadoras de decisão de acordo com o modelo FDH, (que pode ser constatado, no apêndice A), verifica-se muitas DMU's na fronteira de eficiência, número bem superior aos verificados no modelo clássico DEA-BCC, corroborando com a assertiva de Gomes, Mello e Biondi Neto (2003), onde evidenciam que o modelo FDH não impõe severas contenções na tecnologia de produção e por isso a abundância de DMU's na fronteira de produção. Dos 123 municípios, 111 eram eficientes, quer dizer, 90,24%, e possuíam eficiência média de 0,997.

Ao aplicar o modelo DEA fronteira invertida, os resultados encontrados, como mostra a tabela 35, demonstram que 28 municípios foram eficientes. Entretanto, das 34 DMU's eficientes no tipo DEA-BCC orientado a *output*, 27 podem ser apontadas no DEA fronteira invertida como "falsa eficientes". Deve-se considerar que este modelo caracteriza-se por frisar o desempenho harmonioso, potencializando os resultados dos seus *outputs* e minimizando o emprego dos *inputs*, possibilitando parecer refinado do problema, principalmente por identificar DMU's "falsa eficientes".

A mensuração da eficiência composta normalizada é auferida pela "divisão do valor da eficiência composta pelo maior valor obtido dos demais valores da eficiência composta" (PIMENTA e MELLO, 2005, p. 8), permitindo a melhor distinção do modelo, que no caso pode-se ratificar, de acordo com a tabela 35, em que somente a DMU 64 (município de Mateiros, microrregião do Jalapão), fora apontada como eficiente. Assim sendo, o uso do método DEA fronteira invertida, invertida composta e composta normalizada, cumpriu da

melhor forma sua função de diferenciação entre as unidades eficientes daquelas nãoeficientes.

As principais DMU's benchmarks foram as 109 (São Miguel do Tocantins), 88 (Piraquê), 59 (Lagoa da Confusão) e 64 (Mateiros), citadas respectivamente para outras 71, 66, 43 e 42 DMU's como referência. Importante destacar que uma DMU eficiente pode ser referência para várias outras DMU's.

O município de São Miguel do Tocantins, o mais citado como referência, possuía como característica relevante: o terceiro maior número de propriedades agropecuárias e de propriedades da agricultura familiar. O município de Piraquê apresentava economia baseada na pecuária bovina, 82,46% das suas propriedades possuíam tratores, 94,74% contavam com orientação técnica e 100% obtiveram receitas. Lagoa da Confusão, município situado na microrregião do Rio Formoso, contava com a 2ª maior produção de arroz (principal produto do estado, no período) e rebanho bovino com mais de 60 mil cabeças, 5ª maior frota de tratores do estado e todos os seus estabelecimentos obtiveram receita naquele ano, seu PIB agropecuário era 103,23% superior ao PIB agropecuário dos municípios ineficientes. Na microrregião do Jalapão, o município de Mateiros tinha como principal característica a pequena produção de subsistência produzindo basicamente o arroz, mandioca, milho, e iniciava, como no restante do estado, a produção do soja e todas as suas propriedades agropecuárias obtiveram receitas.

A principal cultura agrícola, no ano de 1995 no Tocantins, era do arroz, com uma produção total de 417.148 mil toneladas (em casca), cultivado principalmente no projeto Rio Formoso. Os 18 municípios eficientes respondiam por 55,44% da produção de arroz. Destes, 3 municípios localizavam-se na região do projeto Rio Formoso (Formoso do Araguaia, Lagoa da Confusão e Pium); 21,57% da produção de feijão; 24,11% da produção de melancia; 19,59% da produção de milho e 12,16% da produção do soja, cultura que ainda era incipiente no estado, com uma produção total de 36,471 mil toneladas. Em relação à pecuária, os 18 municípios eficientes respondiam por 15,81% do rebanho bovino e 11,37% do suínos, os principais rebanhos no ano de 1995. O PIB agropecuário dos 18 municípios eficientes foi em média 88,83% superior aos ineficientes, respectivamente R\$ 18,056,28 (mil reais) e R\$ 9.562,31 (mil reais).

4.1.2 Análise da eficiência técnica 2006

Os municípios tocantinenses em 2006 detinham eficiência técnica média de 0,749156, as DMU's eficientes no modelo DEA-BCC orientado a *output* somaram 16 municípios e os ineficientes totalizaram 123 municípios, isto é, 13,01% das DMU's eram eficientes tecnicamente, ver tabela 36.

Tabela 36: Eficiência Técnica, DEA-BCC orientação output -2006

		EFICIÊNCL	AS		
DMU	MUNICÍPIOS	PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu1	Abreulândia	0.510978	0.599560	0.455709	0.500288
dmu2	Aguiarnópolis	0.782545	0.561973	0.610286	0.669986
dmu3	Aliança do Tocantins	0.886131	0.530459	0.677836	0.744144
dmu4	Almas	0.619713	0.520511	0.549601	0.603365
dmu5	Alvorada	0.586908	0.313173	0.636868	0.699168
dmu6	Ananás	0.633373	0.567819	0.532777	0.584895
dmu7	Angico	0.672770	0.714118	0.479326	0.526215
dmu8	Aparecida do Rio Negro	0.656106	0.645932	0.505087	0.554496
dmu9	Aragominas	1.000000	0.723348	0.638326	0.700769
dmu10	Araguacema	0.696732	0.587400	0.554666	0.608925
dmu11	Araguaçu	0.672664	1.000000	0.336332	0.369233
dmu12	Araguaína	0.986000	0.907242	0.539379	0.592143
dmu13	Araguanã	0.920343	0.275399	0.822472	0.902929
dmu14	Araguatins	1.000000	1.000000	0.500000	0.548912
dmu15	Arapoema	0.797753	0.657551	0.570101	0.625871
dmu16	Arraias	0.949342	1.000000	0.474671	0.521105
dmu17	Augustinópolis	0.952191	0.469895	0.741148	0.813650
dmu18	Aurora do Tocantins	0.719256	0.368672	0.675292	0.741352
dmu19	Axixá do Tocantins	0.791683	0.602212	0.594735	0.652914
dmu20	Babaçulândia	0.897734	0.854009	0.521863	0.572913
dmu21	Bandeirantes do Tocantins	0.819956	0.237434	0.791261	0.868665
dmu22	Barra do Ouro	0.579340	0.525196	0.527072	0.578632
dmu23	Barrolândia	0.906351	0.367391	0.769480	0.844753
dmu24	Bernardo Sayão	0.894552	0.547696	0.673428	0.739305
dmu25	Bom Jesus do Tocantins	0.330857	0.641683	0.344587	0.378296
dmu26	Brasilândia do Tocantins	0.589296	0.374828	0.607234	0.666636
dmu27	Brejinho de Nazaré	0.583614	0.725766	0.428924	0.470883

		EFICIÊNCI	AS		
DMU	MUNICÍPIOS	PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu28	Buriti do Tocantins	0.860645	0.500051	0.680297	0.746846
dmu29	Cachoeirinha	0.764302	0.826369	0.468966	0.514842
dmu30	Campos Lindos	0.754707	0.855475	0.449616	0.493599
dmu31	Cariri do Tocantins	0.873646	0.654435	0.609605	0.669239
dmu32	Carmolândia	0.587372	0.515251	0.536061	0.588500
dmu33	Carrasco Bonito	0.775685	1.000000	0.387843	0.425783
dmu34	Caseara	0.463886	0.775499	0.344194	0.377864
dmu35	Centenário	0.391284	0.580796	0.405244	0.444886
dmu36	Chapada de Areia	0.452289	0.726265	0.363012	0.398523
dmu37	Chapada da Natividade	0.910306	1.000000	0.455153	0.499678
dmu38	Colinas do Tocantins	0.840778	0.483625	0.678577	0.744957
dmu39	Combinado	1.000000	0.178214	0.910893	1.000000
dmu40	Conceição do Tocantins	0.447377	0.595929	0.425724	0.467370
dmu41	Couto Magalhães	0.549097	0.869339	0.339879	0.373127
dmu42	Cristalândia	0.647729	0.615260	0.516234	0.566734
dmu43	Crixás do Tocantins	0.273064	1.000000	0.136532	0.149888
dmu44	Darcinópolis	1.000000	0.514825	0.742587	0.815230
dmu45	Dianópolis	0.565636	0.549371	0.508133	0.557840
dmu46	Divinópolis do Tocantins	0.895794	0.540428	0.677683	0.743977
dmu47	Dois Irmãos do Tocantins	0.953669	0.901024	0.526322	0.577809
dmu48	Dueré	0.796964	0.763418	0.516773	0.567326
dmu49	Esperantina	0.952541	0.660564	0.645989	0.709182
dmu50	Fátima	0.509926	0.474968	0.517479	0.568100
dmu51	Figueirópolis	0.718941	0.551947	0.583497	0.640577
dmu52	Filadélfia	0.800590	0.754520	0.523035	0.574200
dmu53	Formoso do Araguaia	1.000000	1.000000	0.500000	0.548912
dmu54	Fortaleza do Tabocão	0.846881	0.818199	0.514341	0.564655
dmu55	Goianorte	0.857243	0.634079	0.611582	0.671409
dmu56	Goiatins	0.883869	0.984185	0.449842	0.493847
dmu57	Guaraí	0.971338	0.519508	0.725915	0.796926
dmu58	Gurupi	0.929987	0.502743	0.713622	0.783431
dmu59	Ipueiras	1.000000	1.000000	0.500000	0.548912
dmu60	Itacajá	0.703792	0.553279	0.575257	0.631530
dmu61	Itaguatins	0.535096	0.945538	0.294779	0.323616
dmu62	Itapiratins	0.576475	0.631455	0.472510	0.518733
dmu63	Itaporã do Tocantins	0.918003	0.656326	0.630839	0.692550
dmu64	Jaú do Tocantins	0.600107	0.818818	0.390644	0.428858
dmu65	Juarina	0.785162	0.590806	0.597178	0.655596

		EFICIÊNCL	AS		
DMU	MUNICÍPIOS	PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu66	Lagoa da Confusão	1.000000	0.441655	0.779173	0.855394
dmu67	Lagoa do Tocantins	1.000000	0.671027	0.664487	0.729489
dmu68	Lajeado	0.756018	1.000000	0.378009	0.414987
dmu69	Lavandeira	0.635222	0.812688	0.411267	0.451499
dmu70	Lizarda	0.188602	1.000000	0.094301	0.103526
dmu71	Luzinópolis	0.671852	0.548702	0.561575	0.616510
dmu72	Marianópolis do Tocantins	0.583629	0.888442	0.347593	0.381596
dmu73	Mateiros	1.000000	0.358966	0.820517	0.900783
dmu74	Maurilândia do Tocantins	0.850533	0.847287	0.501623	0.550693
dmu75	Miracema do Tocantins	0.909416	0.575422	0.666997	0.732245
dmu76	Miranorte	0.745812	0.245052	0.750380	0.823785
dmu77	Monte do Carmo	0.585142	1.000000	0.292571	0.321192
dmu78	Monte Santo do Tocantins	0.638435	0.601555	0.518440	0.569156
dmu79	Palmeiras do Tocantins	0.691152	0.843814	0.423669	0.465114
dmu80	Muricilândia	0.961313	0.232556	0.864379	0.948935
dmu81	Natividade	0.651571	0.482235	0.584668	0.641862
dmu82	Nazaré	0.607208	0.545939	0.530635	0.582543
dmu83	Nova Olinda	1.000000	0.728673	0.635664	0.697847
dmu84	Nova Rosalândia	0.516484	0.601910	0.457287	0.502020
dmu85	Novo Acordo	0.589017	0.633107	0.477955	0.524710
dmu86	Novo Alegre	0.370410	0.763767	0.303321	0.332993
dmu87	Novo Jardim	0.594225	0.840746	0.376739	0.413593
dmu88	Oliveira de Fátima	0.837777	0.647003	0.595387	0.653630
dmu89	Palmeirante	0.749066	0.631961	0.558553	0.613192
dmu90	Palmeirópolis	0.766694	0.622832	0.571931	0.627879
dmu91	Paraíso do Tocantins	0.862334	0.460465	0.700934	0.769502
dmu92	Paranã	1.000000	0.979531	0.510235	0.560147
dmu93	Pau D'Arco	0.858804	0.597251	0.630777	0.692481
dmu94	Pedro Afonso	1.000000	0.437825	0.781088	0.857496
dmu95	Peixe	0.879761	0.551275	0.664243	0.729222
dmu96	Pequizeiro	1.000000	0.456553	0.771723	0.847216
dmu97	Colméia	0.857680	0.607613	0.625033	0.686176
dmu98	Pindorama do Tocantins	0.626315	0.664495	0.480910	0.527954
dmu99	Piraquê	0.821607	0.526239	0.647684	0.711042
dmu100	Pium	0.866610	0.892610	0.487000	0.534640
dmu101	Ponte Alta do Bom Jesus	0.584064	0.916573	0.333745	0.366393
dmu102	Ponte Alta do Tocantins	0.701701	0.705110	0.498296	0.547041
dmu103	Porto Alegre do Tocantins	0.730720	0.676773	0.526974	0.578524

EFICIÊNCIAS					
DMU	MUNICÍPIOS	PADRÃO	INVERTIDA	COMPOSTA	COMPOSTA*
dmu104	Porto Nacional	1.000000	0.910162	0.544919	0.598225
dmu105	Praia Norte	0.882930	0.842700	0.520115	0.570995
dmu106	Presidente Kennedy	0.714402	0.464789	0.624807	0.685928
dmu107	Pugmil	0.554679	0.632265	0.461207	0.506324
dmu108	Recursolândia	0.475791	0.745739	0.365026	0.400734
dmu109	Riachinho	0.865048	0.753362	0.555843	0.610218
dmu110	Rio da Conceição	1.000000	0.947368	0.526316	0.577802
dmu111	Rio dos Bois	0.593814	0.419537	0.587138	0.644574
dmu112	Rio Sono	0.750292	1.000000	0.375146	0.411844
dmu113	Sampaio	0.913136	0.724531	0.594303	0.652439
dmu114	Sandolândia	0.689622	0.793731	0.447946	0.491765
dmu115	Santa Fé do Araguaia	0.739056	0.279727	0.729664	0.801043
dmu116	Santa Maria do Tocantins	0.519466	0.921979	0.298743	0.327967
dmu117	Santa Rita do Tocantins	0.352490	0.719922	0.316284	0.347224
dmu118	Santa Rosa do Tocantins	0.678745	0.489731	0.594507	0.652664
dmu119	Santa Tereza do Tocantins	0.844967	0.755583	0.544692	0.597976
dmu120	Santa Terezinha do Tocantins	0.904126	0.627004	0.638561	0.701028
dmu121	São Bento do Tocantins	0.615211	1.000000	0.307606	0.337697
dmu122	São Félix do Tocantins	0.589537	1.000000	0.294768	0.323604
dmu123	São Miguel do Tocantins	0.811833	0.702801	0.554516	0.608761
dmu124	São Salvador do Tocantins	0.628310	0.996338	0.315986	0.346897
dmu125	São Sebastião do Tocantins	0.664100	1.000000	0.332050	0.364532
dmu126	São Valério	0.795572	0.402222	0.696675	0.764827
dmu127	Silvanópolis	0.906468	0.404791	0.750838	0.824288
dmu128	Sítio Novo do Tocantins	0.885064	0.592958	0.646053	0.709253
dmu129	Sucupira	0.591894	0.453670	0.569112	0.624785
dmu130	Taguatinga	0.851965	0.942796	0.454584	0.499053
dmu131	Taipas do Tocantins	1.000000	0.449986	0.775007	0.850821
dmu132	Talismã	0.481709	0.765725	0.357992	0.393012
dmu133	Palmas	0.929939	0.822157	0.553891	0.608074
dmu134	Tocantínia	0.754411	1.000000	0.377205	0.414105
dmu135	Tocantinópolis	0.629953	0.649635	0.490159	0.538108
dmu136	Tupirama	0.896734	0.272774	0.811980	0.891411
dmu137	Tupiratins	0.516833	0.756080	0.380377	0.417587
dmu138	Wanderlândia	0.831044	0.638929	0.596057	0.654366
dmu139	Xambioá	0.753959	0.535755	0.609102	0.668687

*Eficiência normalizada Fonte: Elaboração do autor Após a análise de refinamento, visando aferir o número de unidades eficientes para as quais ela foi conceituada como *benchmark*, considerando a convenção adotada neste trabalho, em que a DMU só é considerara eficiente se for referência para outras duas DMU's, concluise que a DMU 94 (Pedro Afonso) não é eficiente, pois foi referência para apenas 1 DMU.

Dessa forma, as DMU's eficientes após o refinamento foram: DMU 9 (Araguacema); DMU 14 (Araguatins); DMU 39 (Combinado); DMU 44 (Darcinópolis); DMU 53 (Formoso do Araguaia); DMU 59 (Ipueiras); DMU 66 (Lagoa da Confusão); DMU 67 (Lagoa da Tocantins); DMU 73 (Mateiros); DMU 83 (Nova Olinda); DMU 92 (Paranã); DMU 96 (Pequizeiro); DMU 104 (Porto Nacional); DMU 110 (Rio da Conceição) e DMU 131 (Taipas do Tocantins).

Ao comparar os dados de 2006 em relação aos de 1995/96, observa-se que a microrregião de Araguaína, os municípios eficientes no período anterior não se confirmaram em 2006 e, dos seus 17, apenas 1 município (Nova Olinda)foi eficiente. O mesmo aconteceu com os municípios da microrregião do Bico do Papagaio, pois os municípios eficientes em 1995/96 não se confirmaram em 2006 e somente 2 municípios foram eficientes (Araguatins e Darcinópolis).

A microrregião de Dianópolis apresentou 4 municípios eficientes, destacando Taipas do Tocantins, sendo eficiente nos dois períodos, 1995/96 e 2006; o município de Combinado, o mais citado, foi *benchmark* para outras 101 DMU´s. Na microrregião do Jalapão, 2 municípios foram eficientes, Lagoa do Tocantins e Mateiros, e este último confirmou seu status anterior. Miracema do Tocantins enquanto microrregião revelou 2 municípios eficientes (Araguacema e Pequizeiro) e, novamente, Araguacema mostrou-se eficiente. A microrregião de Porto Nacional mostrou, também, 2 municípios eficientes, Ipueiras e Porto Nacional, o qual voltou a registrar eficiência. Finalmente, na microrregião do Rio Formoso, os municípios de Formoso do Araguaia e Lagoa da Confusão ratificaram suas eficiências.

Ao examinar os municípios eficientes em 1995/96 (18 eficientes) e 2006 (15 eficientes), podemos realçar que os municípios de Taipas do Tocantins (microrregião de Dianópolis); Mateiros (microrregião do Jalapão); Araguacema (microrregião de Miracema do Tocantins); Porto Nacional (microrregião de Porto Nacional), Formoso do Araguaia e Lagoa da Confusão (microrregião de Rio Formoso), confirmaram o mesmo status de eficiência.

A microrregião de Gurupi, não apresentou, outra vez, municípios eficientes e pode-se assinalar a não predominância de municípios eficientes em determinada microrregião do Estado, como podemos notar na figura 37.

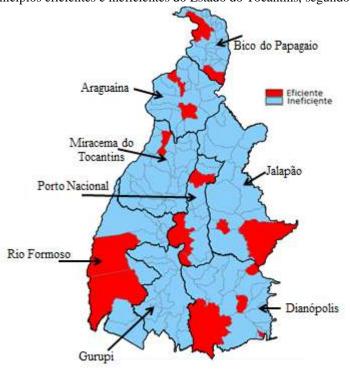


Figura 37: Municípios eficientes e ineficientes do Estado do Tocantins, segundo as microrregiões – 2006

Fonte:Elaboração do autor

Ao empregar o modelo Baseado em Folgas, com a cessação de excedente e folgas presentes na produção agropecuária, a quantidade de DMU's eficientes somaram 5 municípios, confirmando sua maior força de distinção em relação aos modelos clássicos, neste caso, o DEA-BCC orientado a *output*, que somou 16 unidades eficientes. O modelo SBM apresentado no apêndice C reiterou os municípios de Mateiros (DMU 73), Combinado (DMU 39), Lagoa do Tocantins (DMU 67), Ipueiras (DMU 59) e Taipas do Tocantins (DMU 131), como eficientes. A eficiência média SBM foi de 0,212 e a BCC orientado a *output* 0,749, médias inferiores às verificadas em 1995/96, que foram respectivamente 0,326 e 0,974.

A aplicação do modelo FDH (apêndice C) constatou 87 DMU's eficientes, reforçando o caráter do método em que muitas unidades aparecem na fronteira de eficiência. Em 1995/96 pelo método FDH as DMU's eficientes alcançaram 90,24% e, em 2006, as unidades eficientes somaram 62,59%.

A utilização do modelo DEA fronteira invertida (Tabela 36) precisou que 16 DMU's foram eficientes, sendo que as DMU's 14 (Araguatins) e 59 (Ipueiras) repetiram-se nos dois

modelos (BCC orientado a *output*). As demais unidades tomadoras de decisão podem ser consideradas "falsa eficientes" pelo método fronteira invertida.

A DMU 39, município de Combinado, foi a única unidade eficiente ao utilizar-se o modelo de eficiência composta normalizada, ver tabela 36.

As principais unidades *benchmarks* foram as DMU's 39 (Combinado), 96 (Pequizeiro) e 73 (Mateiros), o que pode ser confirmado no Apêndice D.

O município de Combinado, como principal *benchmark*, possuía como características agropecuárias principais, propriedades agrícolas com área média de 26 hectares, a menor do estado. A área média das propriedades tocantinenses em 2006, segundo o censo agropecuário, era de 253 hectares; as propriedades dos municípios eficientes, 198 hectares e dos ineficientes, 263 hectares por propriedades. No município de Combinado, as propriedades da agricultura familiar representavam 97,21% do total, a maior participação no conjunto do estado. A mecanização possuía a melhor relação trator por hectare do estado, com 1 trator para cada 294,63 hectares e 87,44% das suas propriedades obtiveram receitas, o segundo maior percentual do Tocantins.

A produção agropecuária de Combinado está assentada na pecuária leiteira, pois 78,60% dos seus estabelecimentos possuíam vacas ordenhadas e a maior produtividade da produção de leite por hectares do estado.

O município tem sua origem nas fazendas Sussuarana e Caatinga, com terreno plano, levemente ondulado, terra de grande fertilidade e seu modelo de produção inicialmente fora inspirado no projeto de cooperativismo integral com base nos experimentos dos "kibutzs" de Israel, ainda no governo de Mauro Borges em 1962 (IBGE, 2013).

No município de Pequizeiro, 88,32% das suas propriedades eram da agricultura familiar, com área média de 112,20 hectares; 22,31% dos seus estabelecimentos possuíam orientação técnica e 84,94% obtiveram receitas. A atividade pecuária bovina era a base econômica do município, com mais de 82 mil cabeças, a produção de leite ocorreu em 62,44% das suas propriedades, a produção agrícola era basicamente de subsistência com pequena produção de arroz, mandioca e milho.

Em Mateiros, 58,13% das suas propriedades eram da agricultura familiar; no entanto, suas áreas médias eram de 1,322 hectares, corroborando o caráter da grande propriedade agrícola para a produção do soja, seu principal produto, que ocupava em 2006 o 9º lugar no estado em produção, com 16,5 mil toneladas. A assistência técnica chegava a 63,95% dos estabelecimentos, 44,19% possuíam tratores, 60,47% auferiram renda no ano de 2006.

O município de Mateiros possui boa parte de sua área territorial em áreas de proteção ambiental com alta limitação natural para seu uso. No entanto, na área da serra da Tabatinga, na chamada região do MATOPIBA a produção de soja vem se confirmando como uma das mais elevadas do estado, pois em 2011 já alcançava o 2º lugar com 123 mil toneladas, ou seja, um crescimento de 2006 para 2011 de 645,45%.

Os 15 municípios eficientes respondiam por 12,21% da produção do soja (maior produção de grãos do estado em 2006), 31,22% da produção de arroz (segunda maior produção do estado), 21,82% da produção de milho (terceira maior produção do estado) e ainda 22,56% da produção de feijão e 77,36% da produção de melancia. Na produção pecuária, o rebanho bovino respondia por 11,94% do total, 14,77% do rebanho de suínos e 14,16% da produção de leite.

4.2 A Análise do Índice do Malmquist

O Índice de Malmquist é utilizado para mensuração da variação da produtividade e decompõe-se no índice de eficiência e de tecnologia. O índice é cada vez mais usual, por permitir calcular tecnologias de produção com a aplicação de múltiplos *inputs* e *outputs*. O Índice foi avaliado para 123 municípios (DMU's), como argumentado no Capítulo III, da Metodologia.

Em relação à análise, deve-se considerar que caso a eficiência técnica tenha valor menor que 1, é porque piorou. No caso da Eficiência Tecnológica, se for superior a 1, significará que melhorou e, por fim, caso o próprio Índice de Malmquist seja maior que 1, traduzirá que evoluiu. Nessa hipótese o Índice foi calculado orientado a *output*.

Os municípios expressam desempenho mais representativo em relação aos ganhos ocorridos pelas transformações da Eficiência Tecnológica (tabela 37), em que apenas as DMU's 34 (Combinado), DMU 60 (Lagoa do Tocantins), DMU 64 (Mateiros) e DMU 117 (Taipas do Tocantins), apresentaram desempenho inferior a 1, denotando que ocorreu perda na eficiência tecnológica. O melhor desempenho da eficiência tecnológica no período (1995/96 a 2006) foi do município de Lizarda. Essa performance deve ser creditada principalmente pelo avanço da orientação técnica nos estabelecimentos agropecuários do município, pois em 1995/96 ela só alcançava 0,66% das propriedades, e passou para 14,63% em 2006, conforme tabela 37.

A análise da eficiência técnica deixa demonstrado que das 123 DMU's em estudo, 118 tiveram perda na sua eficiência técnica, pois apresentaram resultados inferiores a 1. Os municípios de Mateiros e Taipas do Tocantins, permaneceram com suas eficiências técnicas inalteradas, pois obtiveram valor igual a 1. Somente os municípios de Combinado, Lagoa do Tocantins e Pequizeiro melhoraram suas eficiências técnicas, com valores acima de 1.

Tabela 37: Eficiência Técnica, Tecnológica e Índice de Malmquist – 1995/96 /2006

DMU	MUNICÍPIO	EFICIÊNCIA TÉCNICA	EFICIÊNCIA TECNOLÓGICA	ÍNDICE DE MALMQUIST
Dmu1	Abreulândia	0.510	2.236	1.139
dmu2	Aliança do Tocantins	0.929	1.227	1.139
dmu3	Almas	0.552	2.060	1.138
dmu4	Alvorada	0.549	1.635	0.897
dmu5	Ananás	0.624	1.880	1.174
dmu6	Angico	0.666	1.708	1.138
dmu7	Aparecida do Rio Negro	0.665	1.721	1.145
dmu8	Aragominas	0.626	1.840	1.153
dmu9	Araguacema	0.590	1.941	1.145
dmu10	Araguaçu	0.394	2.517	0.993
dmu11	Araguaína	0.590	1.817	1.072
dmu12	Araguanã	0.920	1.294	1.191
dmu13	Araguatins	0.482	2.362	1.139
dmu14	Arapoema	0.801	1.465	1.173
dmu15	Arraias	0.587	1.885	1.106
dmu16	Augustinópolis	0.940	1.212	1.140
dmu17	Aurora do Tocantins	0.724	1.574	1.139
dmu18	Axixá do Tocantins	0.778	1.463	1.139
dmu19	Babaçulândia	0.582	1.957	1.139
dmu20	Barrolândia	0.923	1.245	1.149
dmu21	Bernardo Sayão	0.756	1.506	1.139
dmu22	Bom Jesus do Tocantins	0.326	2.554	0.833
dmu23	Brasilândia do Tocantins	0.589	1.652	0.973
dmu24	Brejinho de Nazaré	0.586	1.999	1.171
dmu25	Buriti do Tocantins	0.985	1.157	1.139
dmu26	Cachoeirinha	0.763	1.492	1.138
dmu27	Campos Lindos	0.528	1.680	0.888
dmu28	Cariri do Tocantins	0.868	1.312	1.138
dmu29	Carmolândia	0.680	1.079	0.734
dmu30	Carrasco Bonito	0.774	1.471	1.138

DMU	MUNICÍPIO	EFICIÊNCIA TÉCNICA	EFICIÊNCIA	ÍNDICE DE
		TÉCNICA 0.404	TECNOLÓGICA	MALMQUIST
dmu31	Caseara	0.406	2.808	1.139
dmu32	Centenário	0.364	3.136	1.140
dmu33	Colinas do Tocantins	0.838	1.369	1.147
dmu86	Colméia	0.732	1.555	1.139
dmu34	Combinado	1.022	0.780	0.797
dmu35	Conceição do Tocantins	0.512	2.226	1.139
dmu36	Couto Magalhães	0.411	2.773	1.140
dmu37	Cristalândia	0.645	1.771	1.142
dmu38	Darcinópolis	0.542	1.437	0.779
dmu39	Dianópolis	0.446	1.914	0.853
dmu40	Divinópolis do Tocantins	0.603	1.836	1.107
dmu41	Dois Irmãos do Tocantins	0.585	1.951	1.141
dmu42	Dueré	0.734	1.579	1.159
dmu43	Esperantina	0.848	1.342	1.138
dmu44	Fátima	0.571	2.005	1.145
dmu45	Figueirópolis	0.693	1.673	1.160
dmu46	Filadélfia	0.712	1.601	1.140
dmu47	Formoso do Araguaia	0.630	1.957	1.232
dmu48	Fortaleza do Tabocão	0.551	1.352	0.745
dmu49	Goianorte	0.696	1.712	1.192
dmu50	Goiatins	0.589	1.936	1.140
dmu51	Guaraí	0.689	1.662	1.145
dmu52	Gurupi	0.897	1.274	1.143
dmu53	Itacajá	0.523	2.179	1.139
dmu54	Itaguatins	0.428	2.665	1.141
dmu55	Itapiratins	0.539	2.116	1.141
dmu56	Itaporã do Tocantins	0.889	1.282	1.140
dmu57	Jaú do Tocantins	0.430	2.657	1.141
dmu58	Juarina	0.773	1.474	1.139
dmu59	Lagoa da Confusão	0.724	1.027	0.744
dmu60	Lagoa do Tocantins	1.018	0.606	0.617
dmu61	Lajeado	0.469	2.434	1.141
dmu62	Lizarda	0.129	10.248	1.318
dmu63	Marianópolis do Tocantins	0.493	2.311	1.139
dmu64	Mateiros	1.000	0.717	0.717
dmu65	Maurilândia do Tocantins	0.823	1.385	1.140
dmu66	Miracema do Tocantins	0.706	1.682	1.195
dmu67	Miranorte	0.631	1.195	0.754
dmu68	Monte do Carmo	0.429	2.683	1.152
dmu70	Muricilândia	0.927	1.236	1.132
dillu / U	1.1311CHandia	0.341	1.230	1.143

	,	EFICIÊNCIA	EFICIÊNCIA	ÍNDICE DE
DMU	MUNICÍPIO	TÉCNICA	TECNOLÓGICA	MALMQUIST
dmu71	Natividade	0.536	2.148	1.150
dmu72	Nazaré	0.586	1.943	1.138
dmu73	Nova Olinda	0.756	1.506	1.138
dmu74	Nova Rosalândia	0.539	2.115	1.140
dmu75	Novo Acordo	0.631	1.806	1.139
dmu76	Novo Alegre	0.407	2.816	1.147
dmu77	Novo Jardim	0.754	1.515	1.142
dmu118	Palmas	0.585	3.324	1.945
dmu78	Palmeirante	0.640	2.923	1.870
dmu69	Palmeiras do Tocantins	0.655	1.738	1.138
dmu79	Palmeirópolis	0.758	1.501	1.138
dmu80	Paraíso do Tocantins	0.819	1.391	1.139
dmu81	Paranã	0.558	2.045	1.141
dmu82	Pau D'Arco	0.831	1.372	1.139
dmu83	Pedro Afonso	0.778	1.149	0.893
dmu84	Peixe	0.699	1.715	1.199
dmu85	Pequizeiro	1.003	1.139	1.143
dmu87	Pindorama do Tocantins	0.640	1.778	1.139
dmu88	Piraquê	0.793	1.507	1.194
dmu89	Pium	0.741	2.655	1.967
dmu90	Ponte Alta do Bom Jesus	0.451	2.525	1.139
dmu91	Ponte Alta do Tocantins	0.591	1.927	1.139
dmu92	Porto Alegre do Tocantins	0.735	1.548	1.138
dmu93	Porto Nacional	0.549	2.951	1.620
dmu94	Praia Norte	0.879	1.294	1.138
dmu95	Presidente Kennedy	0.714	1.631	1.165
dmu96	Recursolândia	0.324	3.122	1.012
dmu97	Riachinho	0.842	1.352	1.138
dmu98	Rio da Conceição	0.794	1.453	1.154
dmu99	Rio dos Bois	0.602	1.902	1.145
dmu100	Rio Sono	0.547	2.971	1.624
dmu101	Sampaio	0.918	1.240	1.138
dmu102	Sandolândia	0.631	2.460	1.554
dmu103	Santa Fé do Araguaia	0.629	1.184	0.745
dmu104	Santa Maria do Tocantins	0.507	2.266	1.149
dmu105	Santa Rosa do Tocantins	0.574	1.984	1.140
dmu106	Santa Tereza do Tocantins	0.859	1.325	1.139
dmu107	São Bento do Tocantins	0.665	1.712	1.138

DMU	MUNICÍPIO	EFICIÊNCIA TÉCNICA	EFICIÊNCIA TECNOLÓGICA	ÍNDICE DE MALMQUIST
dmu108	São Félix do Tocantins	0.589	1.935	1.140
dmu109	São Miguel do Tocantins	0.808	2.202	1.779
dmu110	São Salvador do Tocantins	0.728	1.563	1.138
dmu111	São Sebastião do Tocantins	0.653	1.742	1.138
dmu112	São Valério	0.717	2.277	1.633
dmu113	Silvanópolis	0.802	1.420	1.139
dmu114	Sítio Novo do Tocantins	0.868	1.314	1.140
dmu115	Sucupira	0.644	1.807	1.163
dmu116	Taguatinga	0.520	2.819	1.465
dmu117	Taipas do Tocantins	1.000	0.755	0.755
dmu119	Tocantínia	0.748	1.520	1.138
dmu120	Tocantinópolis	0.422	2.422	1.023
dmu121	Tupiratins	0.410	1.687	0.691
dmu122	Wanderlândia	0.719	1.583	1.139
dmu123	Xambioá	0.665	1.774	1.180

Fonte: Elaboração do autor

A média da eficiência técnica foi de 0,665, desvio padrão de 0,170. O valor mínimo foi de 0,129, no município de Lizarda, caracterizado pela baixa mecanização, pois em 1995/96, apenas 1,10% das suas propriedades possuíam tratores e em 2006, somente 0,26%. O valor máximo foi do município de Combinado, 1,022, que possuía a melhor mecanização da terra por uso de tratores.

A eficiência tecnológica alcançou uma média significativa de 1,872, desvio padrão de 0,938, sendo o valor mínimo de 0,606, município de Lagoa do Tocantins, em que apenas 1,77% dos seus estabelecimentos recebiam orientação técnica em 2006. Pouco superior ao período de 1995/96 em que somente 0,88% dos estabelecimentos possuíam alguma orientação, em contraponto ao município de Lizarda, com eficiência tecnológica de 10,248, que obteve o melhor desempenho como exposto anteriormente, motivado principalmente pela evolução da sua assistência técnica, mesmo tratando-se de alcance ainda muito restrito, pois beneficiava menos de 15% de suas propriedades em 2006.

Em relação ao Índice de Malmquist, a média das DMU's foi de 1,136, desvio padrão 0,214. O município de Pium, auferiu o melhor resultado, com Índice de 1,967 (tabela 37). Esse resultado pode ser explicado por sua melhoria na assistência técnica, em que 59,60% dos seus estabelecimentos obtiveram orientação em 2006, ante 37,16% em 1995/96, elevação do uso de tratores (que em 1995/96 representavam 42,99% das unidades) para 64,24% em

2006 e número de estabelecimentos que investiram, chegando a 52,32% em 2006 contra 45,17% em 1995/96. O pior resultado foi do município de Lagoa do Tocantins, motivado pela queda da sua eficiência tecnológica.

O Índice de Malmquist piorou em 18 municípios (14,63%), como pode-se observar na tabela 37. Dentre esses municípios podemos destacar importantes produtores do soja em 2006, como Campos Lindos, Dianópolis e Pedro Afonso, respectivamente 1°, 3° e 4° maiores produtores (33,23% da produção total), desempenho forçado principalmente pela baixa eficiência técnica, mesmo com ganhos de eficiência tecnológica.

4.3 Análise das Hipóteses

Da análise dos pesos utilizando o modelo completo com 12 variáveis (9 *inputs* e 3 *outputs*), através da resolução dos problemas da versão multiplicativa de DEA BCC orientado a *output*, observando as variáveis que receberam maior número de vezes pesos superiores a 0,000001 na solução ótima do Problema de Programação Linear (PPL), (com recursos do *software* Siad v3), verificou-se nesta ordem que os fatores determinantes para a eficiência da agropecuária nos municípios tocantinenses em 2006 foram o número de estabelecimentos com orientação técnica, número de estabelecimentos da agricultura familiar e valor dos investimentos (mil reais).

Ao verificar essas variáveis com as hipóteses relacionadas inicialmente, constata-se que o pressuposto principal de que municípios com maior número de estabelecimentos com orientação técnica eram mais eficientes, se confirma, pois aplicando um teste estatístico para a média das DMU's eficientes reprova-se a um nível de significância de 5% a hipótese de a média do grupo ineficiente e do grupo eficiente serem iguais. O resultado comprova que as DMU's eficientes possuem em média 144,13 propriedades com orientação técnica e o grupo das DMU's ineficientes, 94,12 de média.

A suposição secundária de que as DMU's com maior número de propriedades da agricultura familiar seriam mais eficientes, também aplicando o mesmo teste estatístico, comprova que o grupo de DMU's eficientes possuíam em média 485,33 estabelecimentos da agricultura familiar e os ineficientes, 287,25. Em relação à hipótese secundária em que os estabelecimentos agropecuários com maior número de tratores são mais eficientes, utilizando o teste estatístico para a média, rejeita a um nível de significância de 5% a possibilidade de

que as médias das DMU's eficientes e das DMU's ineficientes sejam iguais. A hipótese é rejeitada, pois as DMU's eficientes possuíam média de 72,33 tratores e as DMU's ineficientes 71,42 tratores.

A hipótese suplementar em relação ao pessoal ocupado, em que seu maior número levaria as propriedades agrícolas a serem mais eficientes, também se confirmou para o mesmo teste estatístico utilizado para as variáveis anteriores, pois o grupo das DMU's eficientes apresentaram média de 1.521 pessoas e as DMU's ineficientes 1.081. Deve-se destacar que tratando-se de propriedades em que as unidades da agricultura familiar são predominantes, o uso intensivo de mão-de-obra é relevante para ganhos de eficiência técnica.

As DMU's eficientes apresentaram em média 130 estabelecimentos agropecuários que investiram, enquanto nas DMU's ineficientes esta média foi de 110 propriedades agropecuárias. Dessa forma, se confirma com importante variável a potencializar os resultados da eficiência técnica das DMU's. Ainda em relação às DMU's eficientes, as propriedades que obtiveram receita obtiveram média 306 unidades e as DMU's ineficientes 202 unidades; portanto, substancialmente inferior ao grupo das eficientes. O PIB agropecuário das DMU's eficientes foi em média de R\$ 26.105,73 e o PIB agropecuário das DMU's ineficientes em média de R\$ 12,227,52.

4.4 Problemas e demandas do setor agropecuário do Tocantins

A Secretaria do Planejamento e da Modernização da Gestão Pública do Estado do Tocantins, na elaboração dos Planos Plurianuais 2000/2003, 2004/2007, 2008/2011 e 2012/2015 realizou consultas públicas regionais abrangendo os 139 municípios do Estado, em que a população presente se expressava de forma direta sobre os principais problemas que afetavam sua qualidade de vida. Para tanto, diversas temáticas foram colocadas em pauta: Saúde, Educação e Cultura, Infraestrutura, Segurança Pública e Cidadania, Meio Ambiente, Gestão Pública, Assistência Social, Habitação e Saneamento e o setor Produtivo, subdivido em Turismo, Indústria e Comércio e Agropecuária.

A metodologia utilizada organizava-se de forma simples, onde os diversos atores da sociedade eram convidados para participar das discussões. Nos locais, além da população, estavam presentes um coordenador, para mediar as discussões, e auxiliares para elaborar as atas e confecção das tarjetas para a organização dos problemas, em forma de árvores de

problemas, apresentados pelos participantes, considerando os principais entraves nos diversos setores e suas respectivas causas.

No setor produtivo, observa-se que os problemas são semelhantes nas diversas regiões do estado e muitas das demandas da sociedade estão se repetindo ao longo desses anos, denotando ainda a incapacidade do poder público, nas suas diferentes esferas federativas em atender a classe produtora.

Os principais problemas apresentados foram: a baixa produtividade agrícola, cujas causas levantadas pela sociedade eram o baixo nível de tecnologias disponíveis; não aplicação de tecnologia de manejo do solo, resistência à adesão de novas tecnologias. Outro problema recorrente foi a Insuficiência da assistência técnica, com as seguintes causas apresentadas: precariedade nas condições de trabalho, má distribuição dos técnicos, resistência do produtor, falta de capacitação diversificada dos técnicos extensionistas, falta de unidades demonstrativas de produção, infraestrutura deficiente dos órgãos de assistência técnica, reduzida abrangência e número insuficiente de técnicos. Outro problema discutido nos encontros regionais com grande ênfase foi a dificuldade de acesso ao crédito, sendo as causas expressas pelo produtores: a falta de organização em associações, dificuldades burocráticas para legalização das terras e entraves burocráticos das Instituições financeiras. A dificuldade de acesso a máquinas e equipamentos agrícolas foi um dos principais problemas expostos pela comunidade, sendo colocado como causas o desvio de finalidade, equipamentos insuficientes, ingerência política no uso de máquinas e pequeno índice de beneficiamento da produção. A incipiente pesquisa voltada para o setor produtivo, também foi considerada como importante problema para o desenvolvimento agropecuário, sendo suas causas a centralização das unidades de pesquisa, baixa disseminação das pesquisas aos pequenos produtores. A infraestrutura de produção recebeu destaque na gama de reclamações dos produtores; as principais causas apresentadas foram dificuldade de escoamento, devido à precariedade das estradas vicinais municipais, ineficiência/insuficiência de unidades armazenadoras e secagem, inexistência de patrulha mecanizada, elevado custo da eletrificação rural e por fim, na área de gestão, descompasso entre o atendimento realizado pelo governo e o progresso ocorrido na região.

Os principais problemas e respectivas causas, foram apontados pela sociedade rural tocantinense nestas diversas consultas públicas, realizadas em 2000, 2003, 2007 e 2011, e afirmam de forma empírica suas principais dificuldades para aproveitar melhor as potencialidades do setor e ao mesmo tempo mitigar suas dificuldades. O desafio do presente trabalho foi demonstrar teoricamente os principais fatores determinantes da eficiência técnica

e produtividade, mas ao mesmo tempo reunir essas informações com as experiências vivenciadas pelos produtores rurais no seu cotidiano, das quais pode-se constatar que a orientação técnica é fator chave para eficiência da propriedade rural e foi um problema recorrente nas diversas consultas públicas realizadas ao longo desses últimos anos. Outro fator importante destacado pela sociedade foi a precariedade da infraestrutura, crédito, legalização de terras, máquinas e equipamentos insuficientes, baixa disseminação e aplicação de pesquisas agropecuárias e precariedade das estradas vicinais, estas últimas variáveis não relacionadas neste estudo, mas certamente importantes para a eficiência técnica das propriedades agropecuárias.

CAPÍTULO V

5. CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

A importância da agropecuária para o crescimento econômico do Estado do Tocantins, a produção de alimentos, a geração de renda, empregos, divisas e o uso sustentável dos recursos naturais, dão importância e justificam estudos dessa natureza, principalmente pela possibilidade de ampliar os conhecimentos do setor e contribuir no planejamento das ações dos agentes públicos e privados.

O setor agropecuário brasileiro vivenciou várias fases desde a década de 30 do século passado, o Tocantins acompanhou essa modernização heterogênea, mesmo de forma incipiente, tendo como características atuais, a abertura comercial, integração ao mercado internacional de *commodities*, insumos modernos, demanda crescente por novas tecnologias, investimentos em infraestrutura de transportes, processamento e armazenagem dos produtos. A modernização, não obstante, não anulou persistentes iniquidades no setor, como a elevada concentração fundiária, acentuadas desigualdades socioeconômicas, pobreza e indigência rural e mesmo formas pré-capitalistas de produção, com a presença de trabalho análogo à escravidão.

A caracterização dos municípios, quanto a seus graus de eficiência técnica, aplicando o modelo DEA-BCC orientado a *output*, mais os modelos complementares, como SBM, FDH, fronteira invertida, composta normalizada e o Índice de Malmquist, configuraram-se como importantes etapas no processo de conhecimento das potencialidades e limitações de crescimento do setor agropecuário tocantinense. O entendimento desses fatores permitiu determinar as DMU's (municípios) *benchmarks*, bem como, as folgas e alvos para as DMU's apresentadas como ineficientes, com o objetivo de inseri-las no processo produtivo moderno e eficiente.

A Análise Envoltória de Dados, portanto, permitiu discriminar os municípios eficientes dos ineficientes, os municípios de referência, o excesso de insumos e os produtos que devem ser potencializados, atendendo desta forma, o tema focal da dissertação: avaliar a eficiência técnica da agropecuária nos municípios tocantinenses.

Os dados DEA-BCC orientado a *output*, após o refinamento na determinação das unidades de referência em 1995/96, apresentou 18 DMU's eficientes, ou seja, 14,63% dos

municípios, e em 2006, após o mesmo procedimento, determinou-se 15 DMU's eficientes, isto é, 10,79% do total.

A principal conclusão da aplicação de DEA aos dados dos municípios em 2006 consiste em que a orientação técnica foi a variável com o maior impacto sobre o índice de eficiência técnica dos municípios, evidenciando a importância da assistência ao produtor para otimizar a aplicação dos insumos e potencializar os resultados dos seus produtos.

Por isso, investimentos em orientação técnica devem ser realizados, de forma a alcançar todos os municípios e produtores do estado de forma sistemática, com melhores condições de trabalho aos profissionais (humanas, materiais e financeiras), sua capacitação de forma diversificada, melhor distribuição dos profissionais no território, utilização de unidades demonstrativas, dias de campo e respeito às especificidades regionais.

O número de propriedades da agricultura familiar também teve forte influência na determinação da eficiência. Portanto, adotar uma política de acesso a terra, com uma reforma agrária que privilegie as vocações produtivas dos interessados, que prime pela qualidade, ao invés da quantidade, que atenda a necessidade de infraestrutura produtiva básica instalada em ambiente natural adequado, poderão contribuir de forma significativa com a melhoria da eficiência da agropecuária no estado, propiciando a redução da imensa massa de pobreza rural e auxiliando verdadeiramente os produtores familiares no seu processo de crescimento econômico.

O valor dos investimentos mostraram-se importantes para a eficiência das propriedades agropecuárias tocantinenses. Sendo assim, a abertura de crédito, com menor nível de burocracia, por parte das Instituições Financeiras, o crédito orientado, com os devidos planos de aplicação e comercialização potencializarão os resultados das unidades produtivas.

O objetivo geral é alcançado plenamente com a exposição e análise dos dados do Índice de Malmquist, cujos resultados nos denota a queda da eficiência técnica do setor agropecuário nos municípios tocantinenses no período de 1995/96 para 2006, mas ganhos significativos na eficiência tecnológica, que determinou o avanço na produtividade total em 85,37% dos municípios.

Os objetivos específicos foram plenamente alcançados com as exposições, no capítulo I, das referências entre agricultura e crescimento econômico, bem como, a caracterização do setor no estado do Tocantins; no capítulo II. No referencial teórico, exploramos os conceitos aplicados à Análise Envoltória de Dados e o Índice de Malmquist, a comprovação e refutação das hipóteses e por fim a proposição de melhorias para o setor.

Diante dos resultados alcançados, a hipótese principal que norteou este trabalho se confirmou, ou seja, a orientação técnica proporciona maior eficiência técnica as DMU's. As hipóteses secundárias, "o maior número de estabelecimentos da agricultura familiar oportunizam a eficiência técnica e quanto mais numeroso o pessoal ocupado nas DMU's estas seriam mais eficientes", também foram confirmadas.

A hipótese secundária, em que o número de tratores determinaria maior eficiência das DMU's, não se confirmou, a um nível de significância de 5%, portanto, são culturas que ainda demandam uso intensivo de mão-de-obra e menor intensidade de capital, ainda que comumente a classe produtora, notadamente os propriedades da agricultura familiar, demandem acesso a tratores e implementos agrícolas nos encontros de planejamento.

O trabalho possui limitações nítidas, pois o estudo foi realizado com os dados dos últimos dois censos, que datam de 1995/96 e 2006. Isto posto, fica a sugestão para confecção de trabalhos posteriores: uma renovação e ampliação deste estudo, com a aplicação de dados os mais recentes possíveis.

A dificuldade de informações do quadro natural (dados climáticos, relevo, fertilidade, aptidão de uso do solo, bacias hidrográficas, áreas de preservação ambiental, etc.), para cada município, certamente foi um delimitador, que, se resolvida, poderia auxiliar nas interpretações dos índices de eficiências encontrados. Fica aqui registrada a proposta.

Analisar a eficiência produtiva dos municípios tocantinenses, ampliando as variáveis como infraestrutura de estradas, água, energia, preparação do solo, associativismo, uso da irrigação e questões ambientais, como uso de práticas conservacionistas e licenciamento ambiental, trariam contribuições para melhor entender o processo de produção e gerar subsídios para a elaboração de uma política que seja capaz de dinamizar o setor agropecuário e internalizar ganhos aos produtores e à sociedade tocantinense.

Assim, por uns e outros, dou por finalizado o cumprimento do compromisso proposto, que, felizmente, pôde redundar neste estudo.

Se de todo, talvez, possa um dia parecer essa jornada agora realizada uma contribuição teórica de segunda classe, restar-me-ia, pelo menos, o consolo de que muito aprendi, sofri e até me diverti ao formulá-la.

REFERÊNCIAS BIBLIOGRÁFICAS

ALBUQUERQUE, M. C. C. de; NICOL, R.. Economia agrícola: o setor primário e a evolução da economia brasileira. São Paulo: McGraw Hill, 1987.

ALMEIDA M., REBELATTO D. **Sistematização das técnicas para avaliar a eficiência: variáveis que influenciam a tomada de decisão estratégica**. II SEGeT – Simpósio de Excelência em Gestão e Tecnologia. 2006. Disponível em:http://www.aedb.br/seget/artigos06/799_Tecnicas%20para%20avaliar%20a%20eficiencia%20em%20infra%20-%20final.pdf Acesso em 18 de agosto de 2012.

ALMEIDA, Mariana R. A eficiência dos investimentos do Programa de Inovação Tecnológica em Pequena Empresa (PIPE): uma integração da Análise Envoltória de Dados e índice de Malmquist. São Carlos: USP, 2010. Disponível em: <www.teses.usp.br/teses/.../MarianaRodriguesAlmeida.pdf> Acesso em 29 dezembro de 2012.

ALMEIDA, Mariana R.; MARIANO, Enzo B. **Avaliação de eficiência dos aeroportos internacionais brasileiros.** Foz do Iguaçu, 2007. Disponível em: producaoonline.org.br/rpo/article/download/51/51>. Acesso em 17 de agosto de 2012.

ALMEIDA, Paulo Nazareno Alves. **Fronteira de produção e eficiência técnica da agropecuária brasileira em 2006.** Piracicaba, 2012. Disponível em www.teses.usp.br/.../Paulo_Nazareno_Alves_Almeida.pdf Acesso em 29 dezembro de 2012.

ARAÚJO, P, F, C,; SCHUH, G, E, Desenvolvimento econômico e o papel da agricultura, In: ECONOMIA e administração agroindustrial, Piracicaba: DESR/ESALQ, 1995, cap, 1, p, 1-28, (Série Didática, n, 96),

BALDWIN, Robert E. **Desenvolvimento e crescimento econômico**. São Paulo: Pioneira, 1979.

BARBOSA, Ycarim Melgaço, **Conflitos sociais na fronteira amazônica: Projeto Rio Formoso**. Campinas: Papirus; Goiânia: Elege Publicidade e Editora, 1996.

BESANKO, David. BRAEUTIGAM, Ronald R. **Microeconomia:** uma abordagem completa. Rio de Janeiro: LTC, 2004.

BORGES, Barsanulfo G. Goiás **Nos Quadros da Economia Nacional: 1930-1960**, Goiânia: Ed. UFG, 2000.

BRASIL. **Lei nº 11.326, de 24 de julho de 2006.** Brasília, 2006. Disponível em:mailto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11326.htm. Acesso em 06 março de 2013.

BRASIL. **Lei nº 4.504 de 1964.** Brasília, 1965. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/L4504.htm Acesso em 06 março de 2013.

BRUNETTA, Marlon Rodrigo. **Avaliação da eficiência técnica e de produtividade usando Análise Envoltória de Dados: Um estudo de caso aplicado a produtores de leite.** Curitiba, 2004. Disponível em:< http://dspace.c3sl.ufpr.br/dspace/bitstream/handle/1884/639/ Dissert_Marlon.pdf?sequence=1> . Acesso em 07 de setembro de 2012.

CAMANHO. A. S.; DYSON, R. G. **Data envelopment analysis and Malmquist índices for measuring group performance.** Journal of Productivity Analysis, v. 26, p. 35-49, 2006.

CAVALCANTE, Maria do Espírito Santo Rosa. **Tocantins:** *O Movimento Separatista do Norte de Goiás*, *1821 - 1988* - São Paulo: A. Garibaldi, Editora da UCG, 1999.

CHARNES, A.; *et al.* **Data envelopment analysis:** theory, methodology, and application. Massachusetts: Ed. Dordrech: Kluwer Academic, 1997.

COELHO, Carlos Nayro. **70 Anos de Política Agrícola no Brasil** (**1931-2001**). Revista de Política Agrícola. Brasília, 2001.

COELHO JUNIOR, Euripedes Vieira. A modernização da agricultura brasileira e alguns de seus aspectos socioambientais: o caso da região de Goianápolis-GO. Goiânia, 2005. Disponível em:

http://possociologia.cienciassociais.ufg.br/uploads/109/original_Euripedes.pdf>Acesso em 08 setembro de 2012.

COELLI, T. J.; RAO, D. S. P. **Total factor productivity growth in agriculture:** A Malmquist index analysis of 93 countries, 1980-2000. *Agricultural Economics*, v. 32, p. 115-134, 2005.

COELLI, Timothy J. *et al.* An introduction to efficiency and productivity analysis. 2^a Ed. New York: Springer, 2005.

COELLI, Timothy J. **A Guide to DEAP Version 2.1:** A Data Envelopment Analysis (Computer) Programa. New England: CEPA, 1996.Disponível em: http://www.owlnet.rice.edu/~econ380/DEAP.PDF> Acesso em 05 de maio de 2012

COOPER, W. W.; SEIFORD, L. M.; ZHU, J. (Orgs.). **Handbook on Data Envelopment Analysis.** Boston: Kluwer Academic Publishers, 2004.

COURA, Rodrigo Mendes. **Produtividade total dos fatores (PTF) na agricultura paulista: 1925-2001.** Viçosa, 2004. Disponível em: < http://www.economia-aplicada.ufv.br/docs/mestrado/2004/rodrigo mendes.pdf> Acesso em 30 dezembro de 2012.

DARAIO, Cinzia. SIMAR, Léopold. **Advanced Robust and Nonparametric Methods in Efficiency Analysis:** Methodology and Application. New York: Springer, 2007.

DINIZ, Bernardo Palhares Campolina. **O grande Cerrado do Brasil Central: geopolítica e economia**. São Paulo, 2006.

DYSON, R.G., THANASSOULIS, E. e BOUSSOFIANE, A. **Data Envelopment Analysis**. Operational Research Society, 1990, p. 13-28.

DYSON, R.G. *et al.* **Pitfalls and Protocols in DEA**. European Journal of Operational Research, 2001, Vol. 132, No. 2, p. 245-259.

ESTEVAM, Luís. O Tempo da Transformação – Estrutura e dinâmica da formação econômica de Goiás. Goiânia: UCG, 2004.

FEIJÓ, Ricardo Luís Chaves. **Economia Agrícola e Desenvolvimento Rural**. Rio de Janeiro: LTC, 2011.

FARREL, Michael J. **The measurement of productive efficiency.** Journal of Royal Statistical Society, vol. 120, n° 3, 1957, p. 253-290. Disponível em: http://www.aae.wisc.edu/aae741/Ref/Farrell%201957.pdf>. Acesso em 05 de maio de 2012

FERREIRA, Carlos Maurício de Carvalho. GOMES, Adriano Provezano. **Introdução à Análise Envoltória de Dados – Teorias, Modelos e Aplicações.** Viçosa: Ed. UFV, 2009.

FRIED, Harold O.; LOVELL, C. A.; SCHMIDT, Shelton S. **The measurement of productive efficiency** Techniques and applications. USA: Oxford University Press, 1993.

FURTADO, Celso. **Formação Econômica do Brasil**. 12ª. Ed. São Paulo: Ed. Companhia Nacional, 1974.

_____, Celso. **Os desafios da nova geração**. Revista de Economia Política, São Paulo, v. 24, n. 4 (96), p.483-486, outubro – dezembro 2004. Disponível em: http://www.rep.org.br/pdf/96-1.pdf>. Acesso em 01 agosto em 2012.

FUSFELD, Daniel R. A era do economista. São Paulo: Saraiva, 2003.

GIL, Antônio Carlos. **Métodos e técnicas de pesquisa social.** 5ª Ed. São Paulo: Ed. Atlas, 2007.

GOLANY, B. ROLL, Y. **An application procedure for DEA.** Omega, v. 17, 1989, p.237-250

GOMES, E.G.; Soares de MELLO, J.C.C.B.; BIONDI NETO, L. **Avaliação de eficiência por análise de envoltória de dados: conceitos, aplicações à agricultura e integração com sistemas de informação geográfica. Documentos**, n. 28. Campinas: Embrapa Monitoramento por Satélite, 2003. Disponível em: http://www.cnpm.embrapa.br/publica/download/d28_envoltdados_vf.pdf>. Acesso em 03 outubro de 2012.

GOMES, E. G.; Soares de MELLO, J. C. C. B.; MANGABEIRA, João Alfredo de C. **Estudo da sustentabilidade agrícola em um município amazônico com análise envoltória de dados.** Pesquisa Operacional: 2009, vol. 29, p. 23-42. Disponível em:http://www.scielo.br/pdf/pope/v29n1/a02v29n1.pdf>. Acesso em 03 outubro de 2012.

GOMES, Eliane Gonçalves. **Uso de modelos DEA em Agricultura: Revisão da literatura.** Rio de Janeiro: Engevista, V. 10, no. 1, p. 27-51, 2008. Disponível em: http://www.uff.br/engevista/seer/index.php/engevista/article/.../11.... Acesso em 21 dezembro de 2012.

GREMAUD, Amaury; VASCONCELLOS, Marco A. S. de.; TONETO JUNIOR, Rudinei. **Economia Brasileira Contemporânea**. 4ª. Ed. São Paulo: Atlas, 2002.

GROSSKOPF, S. **Some remarks on productivity and its decompositions.** Journal of productivity analysis, v. 20, n. 3, p. 459-474, 2002.

HODDER, B.W. Economic Development in the Tropics. London: Methuen & Co., 1968. HOFFMANN, Rodolfo. NEY, Marlon Gomes. Estrutura fundiária e propriedade agrícola no Brasil, grandes regiões e unidades da federação (de 1970 a 2008). Brasília, 2010. HOLANDA, Sérgio Buarque. Raízes do Brasil. 26ª Ed. São Paulo: Companhia das Letras, 1995. IMORI, Denise. Eficiência produtiva da agropecuária familiar e patronal nas regiões brasileiras. São Paulo, 2011. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Censo Agropecuário, 1985. Rio de Janeiro: IBGE, 1985. _____. Censo Agropecuário, 1996. Rio de Janeiro: IBGE, 1996. . Censo Agropecuario, agricultura familiar, 2006. Rio de Janeiro: IBGE, 2009. . Contas Regionais, 2004-2009. Rio de Janeiro: IBGE, 2010. . Contas Regionais, 2010. Rio de Janeiro: IBGE, 2012. . Censo Demográfico, 1991. Rio de Janeiro: IBGE, 1991. _____. Censo Demográfico, 2000. Rio de Janeiro: IBGE, 2000. . Censo Demográfico, 2010. Rio de Janeiro: IBGE, 2010. . **Regiões de Influência das Cidades, 2007.** Rio de Janeiro: IBGE, 2008.

_.Pesquisa da Produção Agrícola Municipal, 1995-2011. Rio de Janeiro: IBGE,

2013.

______.Pesquisa da Pecuária Municipal, 1995-2011. Rio de Janeiro: IBGE, 2013.

_____.Mapas Políticos Administrativos, 2012. Rio de Janeiro: IBGE, 2013.

INSTITUTO DE PESQUISA ECONÔMICA APLICADA – IPEA. Caracterização e análise da dinâmica da produção agropecuária na Amazônia Brasileira: Uma análise a partir do Censo Agropecuário 2006. Brasília, 2013.

JOHNSTON, Bruce, F. MELLOR, John W. **El papel de la agricultura en el desarrollo econômico**. Fondo de Cultura Económica, vol. 29, no. 114(2), p. 279-307, 1962. Disponível em http://www.jstor.org/stable/20855557 Acesso em 10 julho de 2012.

KOOPMANS, T. C. Activity Analysis of Production and Allocation. New York: John Wiley & Sons, 1951.

LAMERA, Janice Alves. **Análise da eficiência dos assentamentos rurais em Mato Grosso.** Cuiabá, 2008. Disponível em:

http://www.ufmt.br/ufmt/site/userfiles/file/adr/Disserta%C3%A7%C3%B5es/Disserta%C3%A7%C3%A3o_JaniceAlves.pdf>Acesso em 11 novembro de 2011.

LIN, L.C.; TSENG, C. C. Operational performance evaluation of major containerports in the Asia-Pacific region. Maritime Policy & Management, 2007, p. 535-551.

LINS, Marcos P. Estellita. CALÔBA, Guilherme M. **Programação Linear**. Rio de Janeiro: Interciência, 2006.

LUCENA, Romina Batista de. SOUZA, Nali de Jesus de. **O papel da agricultura no desenvolvimento econômico brasileiro, 1980/1998.** Revista Análise econômica, ano 19, no. 35, p. 55-72, Porto Alegre, 2001.

MALUF, Renato S. **Atribuindo sentido(s) ao desenvolvimento econômico**. *Estudos Sociedade e Agricultura*, n. 15, p. 53-86, 2000.

MANKIW, N. Gregory. **Introdução à economia**: princípios de micro e macroeconomia. 2ª. Ed. Rio de Janeiro: Campus, 2001.

MARIANO, Enzo B.; ALMEIDA, Mariana R.; REBELATTO, Daisy A. N. **Princípios Básicos para uma proposta de ensino sobre Análise Envoltória de Dados.** Passo Fundo: Ed. Universidade de Passo Fundo, 2006. Disponivel em:<

http://www.dee.ufma.br/~fsouza/anais/arquivos/14_285_716.pdf> Acesso em 17 novembro de 2011.

MARINHO, Alexandre. FAÇANHA, Luís Otávio. **Programas Sociais: efetividade, eficiência e eficácia como dimensões operacionais da avaliação.** Rio de Janeiro: IPEA, 2001.

MARQUES JÚNIOR, Francisco Daladier *et al.* Estimação de uma fronteira eficiente para avaliar a produção agrícola dos municípios do sertão paraibano, através da análise envoltória de dados (**DEA**). Ubatuba, 2011. Disponível em:http://www.din.uem.br/sbpo/sbpo2011/pdf/87125.pdf Acesso em 04 janeiro de 2013.

MELLO, João Carlos C. B. S., *et al*. Curso de Análise de Envoltória de Dados. Gramado. SBPO, 2005.

MELLO, João Carlos C. B. S., *et al.* **Estudo não paramétrico da relação entre consumo de energia, renda e temperatura.** Revista IEEE América Latina, v. 6, 2008. Disponível em:http://www.revistaieeela.pea.usp.br/ieee/issues/vol6issue2June2008/6TLA2_05CorreiaBaptistaSoaresdeMello.pdf Acesso em 05 janeiro de 2013.

MELO JÚNIOR, Aroldo Messias de. **Índice de Malmquist aplicado na avaliação de produtividade de soja da região de Guarapuava.** Guarapuava, 2005. Disponível em: http://www.ppgmne.ufpr.br/arquivos/diss/140.pdf> Acesso em 29 dezembro de 2012.

MEZA, Lídia Ângulo, *et al.* **Seleção de variáveis em DEA aplicada a uma análise do mercado de energia eléctrica.** Inv. Op. [online]. 2007, vol.27, n.1, pp. 21-36. Disponível em:< http://apdio.pt/documents/10180/15550/n2.pdf> Acesso 11 de maio de 2012.

MILONE, Paulo César, Crescimento Econômico. PINHO, Diva Benevides (Org.). **Manual de Economia da USP.** São Paulo: Saraiva, Parte V, cap. 1, p. 405-418, 1991.

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. **Projeções do Agronegócio: Brasil 2011/12 a 2012/22**. Brasília, 2012.

MIRANDA NETO, Manoel José de. **Pesquisa para o planejamento métodos e técnicas** roteio para elaboração de projetos. Rio de Janeiro: FGV Editora, 2007.

MUNHOZ, Dércio Garcia. **Economia aplicada:** técnicas de pesquisa e análise econômica. Brasília: Ed. UnB, 1989.

NEGREIROS, Gilberto Andrade. **Eficiência econômica na produção leiteira: o caso da Cooperativa Agropecuária Tocantinense – CAT.** Palmas, 2009. Disponível em: http://www.uft.edu.br/pgdra/documentos/dissertacoes/gilberto_andrade_negreiros_2009.pdf > Acesso em 18 novembro de 2011.

NOGUEIRA, Magda Aparecida. **Eficiência técnica na agropecuária das microrregiões brasileiras.** Viçosa, 2005. Disponível em: < http://www.economia-aplicada.ufv.br/docs/doutorado/2005/magda_aparecida.pdf> Acesso em 11 novembro de 2011.

NOLÊTO JÚNIOR, Sebatião. Avaliação ambiental estratégica do conjunto de projetos hidroagrícolas da planície do araguaia, Estado do Tocantins. Palmas, TO, 2005.

NORTH, D. C. (1959). **Agriculture in Regional Economic Growth**. Journal of Farm Economics, 41(5), dec. Versão em português em SCHWARTZMANN, J. (Org) (1977). *Economia Regional*: textos escolhidos. Belo Horizonte: Cedeplar.

NORTH, Douglass C. THOMAS, Robert Paul. **The rise of the western world:** a new economic history. USA: Cambridge University Press, 1973

OLIVEIRA, Gilson Batista. **Uma discussão sobre o conceito de desenvolvimento**. Revista da FAE, Curitiba, v. 5, n. 2, p. 37-48, 2002. Disponível em: http://www.fae.edu/publicacoes/revista.asp#5_2 Acesso em 12 maio de 2012.

OLIVEIRA, G.; PEREIRA, A. da S. . **Da Agricultura ao Desenvolvimento: a transição de regiões periféricas ao capitalismo mercantil segundo Douglas North**. In: Sober, 2010, Campo Grande. Sober, 2010. Disponível em: http://www.rep.org.br/pdf/96-1.pdf>. Acesso em 05 setembro de 2012.

OLIVEIRA, Rosy de. **O movimento separatista do Tocantins e a CONORTE** (**1981-1988**). Campinas, SP: [s. n.], 1998.

PAIVA JR, H. **Avaliação de desempenho de ferrovias utilizando a abordagem integrada DEA/AHP**. Campinas. Dissertação (Mestrado) - Faculdade de Engenharia Civil. Universidade Estadual de Campinas - UNICAMP, 2000.

PALACIN, Luís, MORAES, Maria Augusta Sant'anna. **História de Goiás** (**1722 - 1972**). 5ª edição - Goiânia: Ed. da UCG, 1989.

PEREIRA, Caroline Nascimento. **Análise exploratória da eficiência produtiva das usinas de cana-de-açúcar na região centro-sul do Brasil com o método análise envoltória de dados (DEA) – Índice de Malmquist.** Campinas, 2012. Disponível em: http://www.bibliotecadigital.unicamp.br/document/?code=000856949 Acesso em 30 dezembro de 2012.

PINDYCK, R. S.; RUBINFELD, D. L. Microeconomia. São Paulo: Makron Books, 1994.

POZO, David Trillo del. **Análisis económico y eficiencia del sector público.** In: VII Congresso Internacional del CLAD sobre la Reforma del Estado y de la Administración Pública, Madrid, 2002.

Disponívelem:http://www.fcjs.urjc.es/departamentos/areas/profesores/descarga/rrqrvzwqw/CLAD%20TRILLO.pdf Acesso em 18 de agosto de 2012

RAA, Thijs ten. **Debreu's coefficient of resource utilization, the Solow residual, and TFP:** the connection by Leontief preferences. Netherlands: Tilburg University, 2003. Disponível em: http://arno.uvt.nl/show.cgi?fid=10467;h=repec:dgr:kubcen:2003111. Acesso em 18 janeiro de 2013.

RAMANATHAN, R. An introduction to Data Envelopment Analysis: a tool for performance measurement. New Delhi: Sage Publications, 2003.

RODRIGUES, Waldecy; BARBOSA, Gislane Ferreira; PARREIRA, Livian Alves. **Avaliação da eficiência da produção de soja no município de Pedro Afonso–TO: uma Análise Envoltória de Dados (DEA)**. 47° SOBER: Porto Alegre, 2009. Disponível em: http://www.sober.org.br/palestra/13/184.pdf>. Acesso em 01 agosto de 2012.

RODRIGUES, Waldecy. VASCONCELOS, Silvio Jucá, BARBIERO, Alan Kardec. **Análise da efetividade socioeconômica do PRODECER III no município de Pedro Afonso, Tocantins.** Revista Pesquisa Agropecuária Tropical, v. 39, no. 4, p. 301-306. Goiânia, 2009. Disponível em http://www.revistas.ufg.br/index.php/pat/article/view/5581 Acesso em 17 janeiro de 2013.

SAMUELSON, Paul. NORDHAUS, William D. **Economia**.17^a edição. Rio de Janeiro: McGraw-Hill, 2001.

SANDRONI, Paulo. **Novíssimo dicionário de economia**. 5ª. Ed. São Paulo: Best Seller, 2000.

SANTOS, Maurinho Luiz dos; VIEIRA, Wilson da Cruz. **Métodos quantitativos em economia.** Viçosa: Ed. UFV, 2004.

SARAFIDIS, Vasilis. **An assessment of comparative efficiency measurement techniques**. London: Europe Economics, 2002. Disponível em: http://www.europe-economics.com/download/eeeff.pdf Acesso em 10 novembro de 2012.

SCHUMPETER, Joseph Alois. **Teoria do desenvolvimento econômico:** uma investigação sobre lucros... São Paulo: Nova Cultural, 1997.

SECRETARIA DO PLANEJAMENTO (SEPLAN). Superintendência de Planejamento e Gestão Central de Políticas Públicas. Diretoria de Zoneamento Ecológico-Econômico (DZE). **Estudo da Dinâmica da Cobertura e Uso da Terra do Estado do Tocantins - 1990/2007**. Palmas, Seplan/DZE, 2010. DVD-ROM.

SECRETARIA DO PLANEJAMENTO E DA MODERNIZAÇÃO DO TOCANTINS (SEPLAN). **Anuário Estatístico do Estado do Tocantins**. Palmas, 2010.

SECRETARIA DO PLANEJAMENTO E MEIO AMBIENTE (SEPLAN). Diretoria de Zoneamento Ecológico-Econômico (DZE). **Uma indicação de potencial do uso das terras do Tocantins.** Palmas: Seplan/DZE, 1999. 14p.

SECRETARIA DO DESENVOLVIMENTO SUSTENTÁVEL E DOS RECURSOS HÍDRICOS. Plano Estadual de Irrigação do Tocantins. 2011.

SEN, Amartya. **Desenvolvimento como liberdade**. São Paulo: Companhia das Letras, 2000.

SENRA, Luís F. A. C., *et al.* **Estudo sobre métodos de seleção de variáveis em DEA.** Pesquisa Operacional, v. 27, n. 2, p. 191-207, 2007. Disponível em: < http://dx.doi.org/10.1590/S0101-74382007000200001>. Acesso em 11 de maio de 2012.

SERRANO, Vicente Coll; BLASCO, Olga M. **Evaluacion de la eficiencia mediante el analisis envolvente de datos:** introducción a los modelos básicos. Valencia: Universidade de Valência, 2006. Disponível em: http://www.eumed.net/libros-gratis/2006c/197/index.htm> Acesso em 07 novembro de 2011.

SILVEIRA, Juliana Q.; MEZA, Lídia A.; MELLO, J. C. C. B. S. Identificação de benchmarks e anti-benchmarks para companhias aéreas usando modelos DEA e fronteira invertida. Niterói: 2012. Disponível em:http://www.scielo.br/scielo.php?pid=S0103-65132012000400011&script=sci_arttext. Acesso em 06 de janeiro 2013.

SOUZA, Daniel Pacífico Homem de. **Avaliação de métodos paramétricos e não paramétricos na análise da eficiência da produção de leite.** Piracicaba, 2003. Disponível em: < www.teses.usp.br/teses/disponiveis/11/11132/.../daniel.pdf> Acesso em 29 dezembro de 2012.

SOUZA, Nali de Jesus de. **Desenvolvimento econômico**. São Paulo: Atlas, 1993.

SOUSA, Luis Gonzaga de. Ensaios de Economia. Paraíba, 2004.

TAVARES, Maria da Conceição. **Da substituição de importações ao capitalismo financeiro:** ensaios sobre economia brasileira. 6ª Ed. Rio de Janeiro: Zahar, 1977.

STEFFANELLO, Marinês; MACEDO, Marcelo Alvaro da Silva; ALYRIO, Rovigati Danilo. **Eficiência produtiva de unidades agropecuárias: uma aplicação do método não-paramétrico análise envoltória de dados (DEA).** Lavras, 2009. Disponível em: http://revista.dae.ufla.br/index.php/ora/article/viewArticle/60 Acesso em 05 janeiro de 2013.

STUKER, Henri. **Uma metodologia de avaliação da eficiência agropecuária de municípios.** Florianópolis, 2003. Disponível em: http://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/85550/195458.pdf?sequence=1> Acesso em 29 dezembro de 2012.

SURCO, Douglas Fukunaga, WILHELM, Volmir Eugênio. **Desenvolvimento de uma ferramenta computacional para avaliação da eficiência técnica baseada em DEA.** Sistemas & Gestão, v.1, n.1, p. 42-157, 2006. Disponível em: < http://www.uff.br/sg/index.php/sg/article/view/3/0>. Acesso em 17 novembro de 2011.

VARIAN, Hal R. **Microeconomia:** uma abordagem moderna. 8ª Ed. São Paulo: Campus, 2012.

VEIGA, José Eli da. **Desenvolvimento sustentável:** o desafio do século XXI. Rio de Janeiro: Garamond, 2005.

WANKE, Peter F.; SILVEIRA, Rafael V..; BARROS, Frederico G. Introdução ao planejamento da infraestrutura e operações portuárias. São Paulo: Ed. Atlas, 2009.

WILHELM, Volmir Eugênio. **Data Envelopment Analysis – DEA.** Curitiba, 2006.

 $\mathbf{AP\hat{E}NDICE}\ \mathbf{A}$ - Resultados utilizando o modelo SBM e FDH, orientação output - 1995/96

MÉ	TODO SB	SM	MÉTODO FDH				
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE		
1	DMU12	1.0000	1	DMU6	1.0000		
1	DMU109	1.0000	1	DMU20	1.0000		
1	DMU59	1.0000	1	DMU22	1.0000		
1	DMU93	1.0000	1	DMU23	1.0000		
1	DMU88	1.0000	1	DMU59	1.0000		
1	DMU89	1.0000	1	DMU68	1.0000		
1	DMU94	1.0000	1	DMU80	1.0000		
1	DMU62	1.0000	1	DMU93	1.0000		
1	DMU118	1.0000	1	DMU97	1.0000		
2	DMU9	0.8610	1	DMU102	1.0000		
3	DMU47	0.8312	1	DMU109	1.0000		
4	DMU96	0.7829	1	DMU123	1.0000		
5	DMU97	0.7380	1	DMU14	1.0000		
6	DMU84	0.6574	1	DMU15	1.0000		
7	DMU123	0.6464	1	DMU16	1.0000		
8	DMU102	0.6447	1	DMU17	1.0000		
9	DMU56	0.6377	1	DMU18	1.0000		
10	DMU45	0.6085	1	DMU19	1.0000		
11	DMU114	0.5957	1	DMU2	1.0000		
12	DMU122	0.5337	1	DMU21	1.0000		
13	DMU112	0.5074	1	DMU4	1.0000		
14	DMU78	0.5027	1	DMU5	1.0000		
15	DMU29	0.4888	1	DMU24	1.0000		
16	DMU5	0.4803	1	DMU25	1.0000		
17	DMU95	0.4643	1	DMU26	1.0000		
18	DMU22	0.4640	1	DMU28	1.0000		
19	DMU104	0.4592	1	DMU29	1.0000		
20	DMU66	0.4505	1	DMU30	1.0000		
21	DMU80	0.4402	1	DMU32	1.0000		
22	DMU18	0.4371	1	DMU33	1.0000		
23	DMU73	0.4262	1	DMU34	1.0000		
24	DMU116	0.4247	1	DMU35	1.0000		
25	DMU46	0.4187	1	DMU36	1.0000		
26	DMU14	0.4142	1	DMU37	1.0000		
27	DMU23	0.4016	1	DMU38	1.0000		
28	DMU82	0.3947	1	DMU40	1.0000		

Continua...

MÉ	MÉTODO SBM			MÉTODO FDH				
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE			
29	DMU103	0.3788	1	DMU41	1.0000			
30	DMU24	0.3608	1	DMU42	1.0000			
31	DMU11	0.3411	1	DMU43	1.0000			
32	DMU49	0.3374	1	DMU44	1.0000			
33	DMU8	0.3360	1	DMU45	1.0000			
34	DMU100	0.3281	1	DMU46	1.0000			
35	DMU70	0.3083	1	DMU47	1.0000			
36	DMU58	0.3032	1	DMU48	1.0000			
37	DMU99	0.3030	1	DMU50	1.0000			
38	DMU41	0.3013	1	DMU52	1.0000			
39	DMU98	0.2980	1	DMU53	1.0000			
40	DMU117	0.2955	1	DMU54	1.0000			
41	DMU19	0.2938	1	DMU55	1.0000			
42	DMU4	0.2880	1	DMU56	1.0000			
43	DMU28	0.2877	1	DMU57	1.0000			
44	DMU108	0.2767	1	DMU58	1.0000			
45	DMU71	0.2681	1	DMU1	1.0000			
46	DMU30	0.2671	1	DMU61	1.0000			
47	DMU42	0.2658	1	DMU62	1.0000			
48	DMU50	0.2607	1	DMU63	1.0000			
49	DMU52	0.2597	1	DMU64	1.0000			
50	DMU32	0.2580	1	DMU65	1.0000			
51	DMU67	0.2573	1	DMU66	1.0000			
52	DMU37	0.2573	1	DMU67	1.0000			
53	DMU83	0.2565	1	DMU7	1.0000			
54	DMU10	0.2467	1	DMU69	1.0000			
55	DMU85	0.2463	1	DMU70	1.0000			
56	DMU111	0.2428	1	DMU71	1.0000			
57	DMU69	0.2386	1	DMU72	1.0000			
58	DMU63	0.2335	1	DMU73	1.0000			
59	DMU64	0.2160	1	DMU75	1.0000			
60	DMU68	0.2148	1	DMU76	1.0000			
61	DMU76	0.2132	1	DMU77	1.0000			
62	DMU33	0.2112	1	DMU78	1.0000			
63	DMU21	0.2093	1	DMU8	1.0000			
64	DMU54	0.2032	1	DMU82	1.0000			
65	DMU1	0.1919	1	DMU83	1.0000			
66	DMU115	0.1917	1	DMU84	1.0000			
67	DMU44	0.1879	1	DMU86	1.0000			
68	DMU120	0.1870	1	DMU87	1.0000			

MÉ	TODO SB	SM	MÉ	MÉTODO FDH				
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE			
69	DMU65	0.1853	1	DMU88	1.0000			
70	DMU20	0.1830	1	DMU89	1.0000			
71	DMU25	0.1765	1	DMU90	1.0000			
72	DMU13	0.1758	1	DMU91	1.0000			
73	DMU39	0.1742	1	DMU92	1.0000			
74	DMU91	0.1692	1	DMU9	1.0000			
75	DMU48	0.1688	1	DMU94	1.0000			
76	DMU43	0.1667	1	DMU95	1.0000			
77	DMU61	0.1665	1	DMU96	1.0000			
78	DMU26	0.1646	1	DMU10	1.0000			
79	DMU6	0.1617	1	DMU98	1.0000			
80	DMU15	0.1609	1	DMU99	1.0000			
81	DMU7	0.1603	1	DMU100	1.0000			
82	DMU40	0.1559	1	DMU101	1.0000			
83	DMU106	0.1554	1	DMU11	1.0000			
84	DMU57	0.1490	1	DMU103	1.0000			
85	DMU2	0.1473	1	DMU104	1.0000			
86	DMU53	0.1455	1	DMU105	1.0000			
87	DMU34	0.1400	1	DMU106	1.0000			
88	DMU119	0.1400	1	DMU107	1.0000			
89	DMU87	0.1373	1	DMU108	1.0000			
90	DMU36	0.1368	1	DMU12	1.0000			
91	DMU16	0.1349	1	DMU110	1.0000			
92	DMU79	0.1334	1	DMU111	1.0000			
93	DMU27	0.1284	1	DMU112	1.0000			
94	DMU55	0.1118	1	DMU113	1.0000			
95	DMU17	0.1042	1	DMU114	1.0000			
96	DMU92	0.0958	1	DMU116	1.0000			
97	DMU86	0.0934	1	DMU117	1.0000			
98	DMU81	0.0921	1	DMU118	1.0000			
99	DMU74	0.0888	1	DMU119	1.0000			
100	DMU110	0.0877	1	DMU120	1.0000			
101	DMU121	0.0875	1	DMU121	1.0000			
102	DMU31	0.0873	1	DMU122	1.0000			
103	DMU107	0.0869	1	DMU13	1.0000			
104	DMU38	0.0855	2	DMU27	0.9979			
105	DMU105	0.0848	3	DMU85	0.9961			
106	DMU51	0.0821	4	DMU49	0.9957			
107	DMU72	0.0813	5	DMU31	0.9951			
108	DMU101	0.0792	6	DMU60	0.9881			

Continua...

MÉ	TODO SE	SM	MÉ	TODO FI	Н
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE
109	DMU75	0.0748	7	DMU79	0.9855
110	DMU3	0.0695	8	DMU51	0.9740
111	DMU77	0.0672	9	DMU3	0.9705
112	DMU113	0.0667	10	DMU74	0.9630
113	DMU35	0.0660	11	DMU39	0.9574
114	DMU60	0.0625	12	DMU115	0.9401
115	DMU90	0.0518	13	DMU81	0.9322

Fonte: Elaboração do autor

APÊNDICE B – Folgas, Alvos e Benchmark's – 1995/96

	dmu1 - Abreulândia (eficiência:0.995122)										
Variável	Atual	Radial	Folga	Benchmark							
input1	205	205	0	205							
input2	158	158	72.348171	85.651829							
input3	946	946	0	946							
output1	204	205	0	205	DMU64,DMU88,DMU109,						
output2	4,426.00	4,447.70	6,904.78	11,352.47	DMU111						

	dmu2 - Aliança do Tocantins (eficiência:0.934844)										
Variável	Atual	Radial	Folga	Benchmark							
input1	353	353	0	353							
input2	151	151	47.139745	103.860255							
input3	1,369.00	1,369.00	0	1,369.00							
output1	330	353	0	353							
output2	7,834.00	8,380.01	8,288.10	16,668.11	DMU64,DMU88,DMU109						

	dmu3 - Almas (eficiência:0.919255)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	322	322	0	322							
input2	128	128	47.013487	80.986513							
input3	1,826.00	1,826.00	0	1,826.00							
output1	296	322	0	322							
output2	3,571.00	3,884.67	8,544.45	12,429.12	DMU64,DMU88,DMU109						

	dmu4 - Alvorada (eficiência:0.975535)										
Variável	Atual	Radial	Folga	Benchmark							
input1	327	327	0	327							
input2	122	122	28.490178	93.509822							
input3	1,578.00	1,578.00	0	1,578.00							
output1	319	327	0	327							
output2	14,902.00	15,275.72	56.352582	15,332.07	DMU59,DMU61,DMU109						

	dmu5 - Ananás (eficiência:0.988890)										
Variável Atual Radial Folga Alvo Benchmark											
input1	250	250	0	250							
input2	95	95	0	95							
input3	1,584.00	1,584.00	703.268556	880.731444							
output1	246	248.763802	0	248.763802							
output2	24,052.00	24,322.22	0	24,322.22	DMU12,DMU47,DMU59, DMU114						

	dmu6 - Angico (eficiência:0.994083)										
Variável	Atual	Radial	Benchmark								
input1	169	169	0	169							
input2	55	55	0	55							
input3	675	675	0	675							
output1	168	169	0	169							
output2	2,540.00	2,555.12	0	2,555.12	DMU64,DMU88,DMU108,DMU109,DMU111						

	dmu7 - Aparecida do Rio Negro (eficiência:0.960000)										
Variável	Atual	Radial	Folga	Benchmark							
input1	300	300	0	300							
input2	168	168	60.429954	107.570046							
input3	904	904	0	904							
output1	288	300	0	300	DMU64,DMU88,DMU109,						
output2	6,221.00	6,480.21	11,146.82	17,627.03							

	dmu8 - Aragominas (eficiência:0.949832)										
Variável Atual Radial Folga Alvo Benchmark											
input1	139	139	0	139							
input2	69	69	5.369668	63.630332							
input3	958	958	0	958							
output1	132	138.971931	0	138.971931							
output2	11,213.00	11,805.24	0	11,805.24	DMU9,DMU12,DMU59, DMU88						

	dmu9 - Araguacema (eficiência:1.000000)										
Variável	riável Atual Radial Folga Alvo Benchmark										
input1	177	177	0	177							
input2	82	82	0	82							
input3	755	755	0	755							
output1	177	177	0	177							
output2	11,578.00	11,578.00	0	11,578.00	DMU9						

	dmu10 - Araguaçu (eficiência:0.978385)										
Variável	Atual	Radial	Folga	Benchmark							
input1	721	721	0	721							
input2	284	284	126.518804	157.481196							
input3	3,284.00	3,284.00	1,560.79	1,723.21							
output1	703	718.530941	0	718.530941							
output2	28,224.00	28,847.54	0	28,847.54	DMU47,DMU59,DMU114						

	dmu11 - Araguaína (eficiência:0.967518)										
Variável	Atual	Radial	Benchmark								
input1	656	656	0	656							
input2	332	332	144.051135	187.948865							
input3	3,214.00	3,214.00	1,420.02	1,793.98							
output1	629	650.117316	0	650.117316							
output2	47,821.00	49,426.49	0	49,426.49	DMU47,DMU59,DMU114						

		dmu1	2 - Araguanã	(eficiência:1.0	000000)
Variável	Atual	Radial	Folga	Alvo	Benchmark
input1	49	49	0	49	
input2	28	28	0	28	
input3	279	279	0	279	
output1	48	48	0	48	
output2	20,047.00	20,047.00	0	20,047.00	DMU12

	dmu13 - Araguatins (eficiência:0.992689)										
Variável	Benchmark										
input1	855	855	0	855							
input2	466	466	308.410493	157.589507							
input3	4,548.00	4,548.00	2,676.56	1,871.44							
output1	847	853.238414	0	853.238414							
output2	23,132.00	23,302.37	0	23,302.37	DMU47,DMU59,DMU114						

	dmu14 - Arapoema (eficiência:0.965885)										
Variável	Atual	Radial	Benchmark								
input1	520	520	0	520							
input2	305	305	128.640842	176.359158							
input3	2,270.00	2,270.00	680.118205	1,589.88							
output1	497	514.554192	0	514.554192							
output2	46,677.00	48,325.65	0	48,325.65	DMU47,DMU59,DMU114						

	dmu15 - Arraias (eficiência:0.928990)										
Variável	Atual	Radial	Benchmark								
input1	687	687	0	687							
input2	232	232	98.558582	133.441418							
input3	3,237.00	3,237.00	1,663.64	1,573.36							
output1	638	686.767159	0	686.767159							
output2	15,031.00	16,179.93	0	16,179.93	DMU47,DMU59,DMU114						

	dmu16 - Augustinópolis (eficiência:0.985975)										
Variável	Atual	Benchmark									
input1	713	713	0	713							
input2	236	236	108.7137	127.2863							
input3	1,740.00	1,740.00	0	1,740.00							
output1	703	713	0	713	DMU61,DMU88,DMU111,						
output2	8,411.00	8,530.64	5,076.71	13,607.36							

	dmu17 - Aurora do Tocantins (eficiência:0.978852)										
Variável	vel Atual Radial Folga Alvo Benchmark										
input1	331	331	0	331							
input2	217	217	146.618106	70.381894							
input3	3,134.00	3,134.00	1,099.49	2,034.51							
output1	324	331	0	331							
output2	9,139.00	9,336.45	0	9,336.45	DMU64,DMU88,DMU109						

	dmu18 - Axixá do Tocantins (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	548	548	0	548							
input2	142	142	33.677618	108.322382							
input3	1,794.00	1,794.00	0	1,794.00							
output1	548	548	0	548							
output2	7,416.00	7,416.00	6,114.72	13,530.72	DMU61,DMU88,DMU114						

	dmu19 - Babaçulândia (eficiência:0.999540)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	1,081.00	1,081.00	0	1,081.00							
input2	333	333	175.882683	157.117317							
input3	3,919.00	3,919.00	1,800.63	2,118.37							
output1	1,080.00	1,080.50	0	1,080.50							
output2	13,560.00	13,566.25	0	13,566.25	DMU47,DMU59,DMU114						

	dmu20 - Barrolândia (eficiência:0.977564)										
Variável Atual Radial Folga Alvo Benchmark											
input1	312	312	0	312							
input2	105	105	0	105							
input3	1,002.00	1,002.00	0	1,002.00							
output1	305	312	0	312	DMU64,DMU88,DMU109,						
output2	6,680.00	6,833.31	11,154.01	17,987.32	· · · · · · · · · · · · · · · · · · ·						

	dmu21 - Bernardo Sayão (eficiência:0.987633)										
Variável Atual Radial Folga Alvo Benchmark											
input1	465	465	0	465							
input2	273	273	151.19264	121.80736							
input3	2,520.00	2,520.00	1,245.75	1,274.25							
output1	459	464.747454	0	464.747454							
output2	18,422.00	18,652.67	0	18,652.67	DMU47,DMU59,DMU114						

	dmu22 - Bom Jesus do Tocantins (eficiência:1.000000)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	205	205	0	205						
input2	111	111	32.458443	78.541557						
input3	1,050.00	1,050.00	0	1,050.00						
output1	205	205	0	205	DMU64,DMU88,DMU109,					
output2	5,940.00	5,940.00	3,516.81	9,456.81	DMU111					

	dmu23 - Brasilândia do Tocantins (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	108	108	0	108							
input2	58	58	0	58							
input3	587	587	0	587							
output1	108	108	0	108							
output2	2,627.00	2,627.00	0	2,627.00	DMU23						

	dmu24 - Brejinho de Nazaré (eficiência:0.957237)										
Variável Atual Radial Folga Alvo Benchmark											
input1	304	304	0	304							
input2	66	66	0	66							
input3	2,053.00	2,053.00	6.848914	2,046.15							
output1	291	304	0	304							
output2	10,766.00	11,246.96	0	11,246.96	DMU59,DMU88,DMU109						

	dmu25 - Buriti do Tocantins (eficiência:0.889961)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	125	125	0	125							
input2	21	21	0	21							
input3	389	389	0	389							
output1	109	122.47725	0	122.47725							
output2	1,224.00	1,375.34	5,911.00	7,286.34	DMU12,DMU29,DMU88, DMU109						

	dmu26 - Cachoeirinha (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	70	70	0	70							
input2	57	57	25.898644	31.101356							
input3	1,333.00	1,333.00	0	1,333.00							
output1	70	70	0	70							
output2	1,200.00	1,200.00	7,605.53	8,805.53	DMU61,DMU64,DMU88						

	dmu27 - Campos Lindos (eficiência:0.995772)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	473	473	0	473							
input2	165	165	89.953901	75.046099							
input3	2,490.00	2,490.00	0	2,490.00							
output1	471	473	0	473							
output2	4,916.00	4,936.87	4,124.98	9,061.86	DMU61,DMU88,DMU114						

	dmu28 - Cariri do Tocantins (eficiência:0.975000)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	200	200	0	200						
input2	86	86	0	86						
input3	689	689	0	689						
output1	195	200	0	200	DMU59,DMU96,DMU109,					
output2	8,350.00	8,564.10	0	8,564.10						

	dmu29 - Carmolândia (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	28	28	0	28							
input2	6	6	0	6							
input3	247	247	0	247							
output1	24	24	0	24							
output2	1,778.00	1,778.00	0	1,778.00	DMU29						

	dmu30 - Carrasco Bonito (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	220	220	0	220							
input2	46	46	0	46							
input3	1,024.00	1,024.00	0	1,024.00							
output1	220	220	0	220	DMU61,DMU64,DMU109,						
output2	1,594.00	1,594.00	0	1,594.00							

	dmu31 - Caseara (eficiência:0.935780)										
Variável Atual Radial Folga Alvo Benchmark											
input1	218	218	0	218							
input2	165	165	90.232	74.768							
input3	1,192.00	1,192.00	0	1,192.00							
output1	204	218	0	218							
output2	4,395.00	4,696.62	3,845.59	8,542.21	DMU64,DMU88,DMU109						

	dmu32 - Centenário (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	227	227	0	227							
input2	154	154	57.395056	96.604944							
input3	943	943	0	943							
output1	227	227	0	227							
output2	3,108.00	3,108.00	11,825.21	14,933.21	DMU64,DMU88,DMU109						

	dmu33 - Colinas do Tocantins (eficiência:0.925678)										
Variável	Atual	Radial	Benchmark								
input1	403	403	0	403							
input2	227	227	110.490574	116.509426							
input3	1,837.00	1,837.00	655.865783	1,181.13							
output1	373	402.948065	0	402.948065							
output2	16,794.00	18,142.39	0	18,142.39	DMU47,DMU59,DMU114						

	dmu34 - Combinado (eficiência:0.978947)										
Variável	Atual	Radial	Benchmark								
input1	285	285	0	285							
input2	247	247	170.219887	76.780113							
input3	1,707.00	1,707.00	79.062682	1,627.94							
output1	279	285	0	285							
output2	10,213.00	10,432.63	0	10,432.63	DMU59,DMU88,DMU109						

	dmu35 - Conceição do Tocantins (eficiência:0.865385)										
Variável Atual Radial Folga Alvo Benchmark											
input1	364	364	0	364							
input2	98	98	0	98							
input3	970	970	0	970							
output1	315	364	0	364							
output2	2,154.00	2,489.07	13,044.21	15,533.28	DMU32,DMU61,DMU109						

	dmu36 - Couto Magalhães (eficiência:0.987342)										
Variável	Atual	Radial	Benchmark								
input1	316	316	0	316							
input2	216	216	127.799084	88.200916							
input3	1,685.00	1,685.00	0	1,685.00							
output1	312	316	0	316							
output2	8,032.00	8,134.97	6,400.45	14,535.42	DMU64,DMU88,DMU109						

	dmu37 - Cristalândia (eficiência:0.974490)									
Variável Atual Radial Folga Alvo Benchmark										
input1	392	392	0	392						
input2	184	184	73.001411	110.998589						
input3	1,560.00	1,560.00	276.092031	1,283.91						
output1	382	392	0	392						
output2	16,726.00	17,163.85	0	17,163.85	DMU59,DMU109,DMU114					

	dmu38 - Darcinópolis (eficiência:0.985507)										
Variável Atual Radial Folga Alvo Benchmark											
input1	345	345	0	345							
input2	151	151	47.6693	103.3307							
input3	1,361.00	1,361.00	0	1,361.00							
output1	340	345	0	345							
output2	4,269.00	4,331.78	12,402.73	16,734.51	DMU64,DMU88,DMU109						

	dmu39 - Dianópolis (eficiência:0.944984)										
Variável	Atual	Radial	Benchmark								
input1	309	309	0	309							
input2	151	151	71.874628	79.125372							
input3	1,826.00	1,826.00	64.305582	1,761.69							
output1	292	309	0	309							
output2	10,971.00	11,609.72	0	11,609.72	DMU59,DMU88,DMU109						

	dmu40 - Divinópolis do Tocantins (eficiência:0.920673)										
Variável	Atual	Radial	Benchmark								
input1	416	416	0	416							
input2	129	129	25.890082	103.109918							
input3	1,566.00	1,566.00	0	1,566.00							
output1	383	416	0	416							
output2	7,586.00	8,239.62	7,020.68	15,260.31	DMU64,DMU88,DMU109						

	dmu41 - Dois Irmãos do Tocantins (eficiência:0.995830)										
Variável Atual Radial Folga Alvo Benchmark											
input1	944	944	0	944							
input2	662	662	490.893632	171.106368							
input3	1,536.00	1,536.00	0	1,536.00							
output1	938	941.928153	0	941.928153							
output2	22,577.00	22,671.55	0	22,671.55	DMU47,DMU59,DMU93, DMU114						

	dmu42 - Dueré (eficiência:0.985596)									
Variável	Benchmark									
input1	438	438	0	438						
input2	250	250	105.00372	144.99628						
input3	4,383.00	4,383.00	3,030.12	1,352.88						
output1	429	435.269815	0	435.269815						
output2	32,894.00	33,374.74	0	33,374.74	DMU47,DMU59,DMU114					

	dmu43 - Esperantina (eficiência:1.000000)										
Variável	Atual	Radial	Benchmark								
input1	110	110	0	110							
input2	35	35	0	35							
input3	1,850.00	1,850.00	0	1,850.00							
output1	110	110	0	110							
output2	1,295.00	1,295.00	3,675.42	4,970.42	DMU64,DMU88,DMU109						

	dmu44 - Fátima (eficiência:0.892377)										
Variável	Atual	Benchmark									
input1	223	223	0	223							
input2	110	110	4.299928	105.700072							
input3	551	551	0	551							
output1	199	223	0	223	DMU59,DMU96,DMU109,						
output2	4,620.00	5,177.19	3,065.35	8,242.53	DMU111						

	dmu45 - Figueirópolis (eficiência:0.958897)										
Variável Atual Radial Folga Alvo Benchmark											
input1	323	323	0	323							
input2	64	64	0	64							
input3	936	936	157.077292	778.922708							
output1	309	322.245109	0	322.245109							
output2	17,196.00	17,933.10	0	17,933.10	DMU12,DMU47,DMU59, DMU114						

	dmu46 - Filadélfia (eficiência:0.998619)										
Variável Atual Radial Folga Alvo Benchmark											
input1	724	724	0	724							
input2	169	169	41.223736	127.776264							
input3	1,499.00	1,499.00	0	1,499.00							
output1	723	724	0	724	DMU59,DMU109,DMU111,						
output2	11,413.00	11,428.79	2,378.72	13,807.50							

	dmu47 - Formoso do Araguaia (eficiência:1.000000)									
Variável Atual Radial Folga Alvo Benchmark										
input1	980	980	0	980						
input2	435	435	0	435						
input3	3,306.00	3,306.00	0	3,306.00						
output1	951	951	0	951						
output2	180,672.00	180,672.00	0	180,672.00	DMU47					

	dmu48 - Fortaleza do Tabocão (eficiência:0.984733)										
Variável	Benchmark										
input1	131	131	0	131							
input2	73	73	20.499721	52.500279							
input3	5,261.00	5,261.00	4,164.26	1,096.74							
output1	129	131	0	131							
output2	6,124.00	6,218.95	0	6,218.95	DMU64,DMU88,DMU109						

	dmu49 - Goianorte (eficiência:0.983015)									
Variável	Atual	Radial	Benchmark							
input1	471	471	0	471						
input2	330	330	225.221391	104.778609						
input3	666	666	0	666						
output1	463	471	0	471	DMU59,DMU96,DMU109,					
output2	11,273.00	11,467.78	107.359009	11,575.14	DMU111					

	dmu50 - Goiatins (eficiência:0.998224)										
Variável Atual Radial Folga Alvo Benchmark											
input1	989	989	0	989							
input2	468	468	324.347563	143.652437							
input3	1,669.00	1,669.00	0	1,669.00							
output1	987	988.756264	0	988.756264	DMU59,DMU93,DMU109,						
output2	11,638.00	11,658.71	0	11,658.71	DMU114						

	dmu51 - Guaraí (eficiência:0.937413)										
Variável Atual Radial Folga Alvo Benchmark											
input1	719	719	0	719							
input2	364	364	239.490309	124.509691							
input3	4,694.00	4,694.00	2,861.57	1,832.43							
output1	674	719	0	719							
output2	12,174.00	12,986.80	0	12,986.80	DMU59,DMU88,DMU114						

	dmu52 - Gurupi (eficiência:0.952971)										
Variável Atual Radial Folga Alvo Benchmark											
input1	446	446	0	446							
input2	193	193	64.023174	128.976826							
input3	2,716.00	2,716.00	1,429.18	1,286.82							
output1	424	444.92432	0	444.92432	DMU47,DMU59,						
output2	22,538.00	23,650.25	0	23,650.25	DMU114						

	dmu53 - Itacajá (eficiência:0.995455)										
Variável Atual Radial Folga Alvo Benchmark											
input1	440	440	0	440							
input2	141	141	47.09732	93.90268							
input3	1,884.00	1,884.00	0	1,884.00							
output1	438	440	0	440	DMU64,DMU88,						
output2	5,115.00	5,138.36	7,981.28	13,119.64	DMU109						

	dmu54 - Itaguatins (eficiência:0.993620)										
Variável Atual Radial Folga Alvo Benchmark											
input1	627	627	0	627							
input2	237	237	131.169531	105.830469							
input3	1,010.00	1,010.00	0	1,010.00							
output1	623	627	0	627	DMU61,DMU88,						
output2	7,943.00	7,994.00	4,880.44	12,874.44	DMU109,DMU114						

	dmu55 - Itapiratins (eficiência:0.993355)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	301	301	0	301							
input2	92	92	38.566475	53.433525							
input3	2,113.00	2,113.00	52.416778	2,060.58							
output1	299	301	0	301	DMU64,DMU88,						
output2	3,528.00	3,551.60	0	3,551.60	DMU109						

	dmu56 - Itaporã do Tocantins (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	245	245	0	245							
input2	187	187	98.205389	88.794611							
input3	1,271.00	1,271.00	85.550151	1,185.45							
output1	245	245	0	245							
output2	13,371.00	13,371.00	0	13,371.00	DMU59,DMU88,DMU109						

	dmu57 - Jaú do Tocantins (eficiência:0.966667)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	450	450	0	450							
input2	159	159	49.326018	109.673982							
input3	1,054.00	1,054.00	0	1,054.00							
output1	435	450	0	450	DMU64,DMU88,						
output2	5,867.00	6,069.31	10,238.68	16,307.99	DMU109						

	dmu58 - Juarina (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	214	214	0	214							
input2	155	155	92.610458	62.389542							
input3	1,752.00	1,752.00	417.001287	1,335.00							
output1	214	214	0	214	DMU64,DMU88,						
output2	4,657.00	4,657.00	0	4,657.00	DMU109						

	dmu59 - Lagoa da Confusão (eficiência:1.000000)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	253	253	0	253						
input2	108	108	0	108						
input3	976	976	0	976						
output1	253	253	0	253						
output2	19,433.00	19,433.00	0	19,433.00	DMU59					

	dmu60 - Lagoa do Tocantins (eficiência:0.982249)										
Variável	Benchmark										
input1	169	169	0	169							
input2	121	121	57.611465	63.388535							
input3	1,170.00	1,170.00	160.203822	1,009.80							
output1	166	169	0	169	DMU64,DMU88,						
output2	2,412.00	2,455.59	1,655.03	4,110.62	, , , , , , , , , , , , , , , , , , , ,						

	dmu61 - Lajeado (eficiência:1.000000)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	54	54	0	54						
input2	45	45	0	45						
input3	1,097.00	1,097.00	0	1,097.00						
output1	54	54	0	54						
output2	983	983	0	983	DMU61					

	dmu62 - Lizarda (eficiência:1.000000)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	453	453	0	453						
input2	62	62	0	62						
input3	232	232	0	232						
output1	434	434	0	434						
output2	3,642.00	3,642.00	0	3,642.00	DMU62					

	dmu63 - Marianópolis do Tocantins (eficiência:0.980296)									
Variável	Atual	Radial	Benchmark							
input1	203	203	0	203						
input2	185	185	94.353916	90.646084						
input3	805	805	0	805						
output1	199	203	0	203	DMU59,DMU88,					
output2	9,276.00	9,462.45	528.433547	9,990.89	DMU109,DMU111					

	dmu64 - Mateiros (eficiência:1.000000)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	107	107	0	107						
input2	34	34	0	34						
input3	943	943	0	943						
output1	107	107	0	107						
output2	1,119.00	1,119.00	0	1,119.00	DMU64					

	dmu65 - Maurilândia do Tocantins (eficiência:0.989653)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	211	211	0	211						
input2	36	36	0	36						
input3	619	619	0	619						
output1	208	210.174593	0	210.174593						
output2	1,881.00	1,900.67	11,397.71	13,298.37	DMU12,DMU29,DMU88, DMU109					

	dmu66 - Miracema do Tocantins (eficiência:0.985023)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	455	455	0	455						
input2	190	190	108.240222	81.759778						
input3	652	652	0	652						
output1	448	454.811808	0	454.811808						
output2	13,899.00	14,110.33	0	14,110.33	DMU12,DMU59,DMU96, DMU109					

	dmu67 - Miranorte (eficiência:0.992933)									
Variável Atual Radial Folga Alvo Benchmark										
input1	283	283	0	283						
input2	111	111	23.406865	87.593135						
input3	1,465.00	1,465.00	0	1,465.00						
output1	281	283	0	283	DMU64,DMU88,					
output2	9,205.00	9,270.52	4,451.74	13,722.26	, , , , , , , , , , , , , , , , , , , ,					

	dmu68 - Monte do Carmo (eficiência:0.987705)										
Variável Atual Radial Folga Alvo Benchmark											
input1	488	488	0	488							
input2	163	163	42.896074	120.103926							
input3	1,305.00	1,305.00	0	1,305.00							
output1	482	488	0	488	DMU59,DMU88,DMU111,						
output2	10,528.00	10,659.05	6,202.63	16,861.69	DMU114						

	dmu69 - Palmeiras do Tocantins (eficiência:0.972973)										
Variável Atual Radial Folga Alvo Benchmark											
input1	185	185	0	185							
input2	43	43	0	43							
input3	2,793.00	2,793.00	476.250664	2,316.75							
output1	180	185	0	185	DMU64,DMU88,						
output2	4,645.00	4,774.03	0	4,774.03	DMU94, DMU96						

	dmu70 - Muricilândia (eficiência:0.911798)										
Variável Atual Radial Folga Alvo Benchmark											
input1	158	158	0	158							
input2	95	95	23.230457	71.769543							
input3	880	880	0	880							
output1	144	157.929718	0	157.929718							
output2	12,073.00	13,240.87	0	13,240.87	DMU9,DMU12,DMU59, DMU88						

	dmu71 - Natividade (eficiência:0.937870)										
Variável	Atual	Benchmark									
input1	676	676	0	676							
input2	206	206	100.006332	105.993668							
input3	1,024.00	1,024.00	0	1,024.00							
output1	634	676	0	676	DMU59,DMU88,						
output2	10,708.00	11,417.36	650.161636	12,067.52	· · · · · · · · · · · · · · · · · · ·						

	dmu72 - Nazaré (eficiência:0.987676)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	568	568	0	568						
input2	214	214	139.964114	74.035886						
input3	3,529.00	3,529.00	745.238369	2,783.76						
output1	561	568	0	568	DMU61,DMU88,					
output2	6,875.00	6,960.78	0	6,960.78	DMU114					

	dmu73 - Nova Olinda (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	362	362	0	362							
input2	118	118	54.587129	63.412871							
input3	2,630.00	2,630.00	284.859896	2,345.14							
output1	362	362	0	362	DMU64,DMU88,						
output2	7,780.00	7,780.00	0	7,780.00	, , ,						

	dmu74 - Nova Rosalândia (eficiência:0.954128)										
Variável Atual Radial Folga Alvo Benchmark											
input1	109	109	0	109							
input2	64	64	15.618289	48.381711							
input3	1,168.00	1,168.00	0	1,168.00							
output1	104	109	0	109	DMU64,DMU88,						
output2	2,509.00	2,629.63	0	2,629.63							

	dmu75 - Novo Acordo (eficiência:0.928836)										
Variável Atual Radial Folga Alvo Benchmark											
input1	135	135	0	135							
input2	41	41	0	41							
input3	496	496	0	496							
output1	125	134.576971	0	134.576971	DMU12,DMU23,						
output2	1,089.00	1,172.43	8,762.80	9,935.23	DMU108,DMU109						

	dmu76 - Novo Alegre (eficiência:0.919746)										
Variável Atual Radial Folga Alvo Benchmark											
input1	77	77	0	77							
input2	30	30	0	30							
input3	343	343	0	343							
output1	70	76.107983	0	76.107983							
output2	2,620.00	2,848.61	15,425.49	18,274.11	DMU12,DMU64,DMU88, DMU109						

	dmu77 - Novo Jardim (eficiência:0.839706)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	52	52	0	52						
input2	11	11	0	11						
input3	485	485	0	485						
output1	41	48.826614	0	48.826614	DMU29,DMU88,					
output2	330	392.994698	3,166.07	3,559.07	DMU94, DMU109					

	dmu78 - Palmeirante (eficiência:0.969510)									
Variável Atual Radial Folga Alvo Benchmark										
input1	462	462	0	462						
input2	146	146	0	146						
input3	262	262	0	262						
output1	434	447.648903	0	447.648903	DMU29,DMU62,					
output2	5,271.00	5,436.77	6,722.91	12,159.68	DMU89, DMU109					

	dmu79 - Palmeirópolis (eficiência:0.971370)										
Variável Atual Radial Folga Alvo Benchmark											
input1	489	489	0	489							
input2	239	239	140.752173	98.247827							
input3	1,903.00	1,903.00	0	1,903.00							
output1	475	489	0	489	DMU61,DMU88,						
output2	10,016.00	10,311.21	2,599.82	12,911.03	DMU114						

	dmu80 - Paraíso do Tocantins (eficiência:0.997886)										
Variável Atual Radial Folga Alvo Benchmark											
input1	473	473	0	473							
input2	136	136	31.975278	104.024722							
input3	2,327.00	2,327.00	626.161863	1,700.84							
output1	472	473	0	473	DMU59,DMU61,						
output2	14,243.00	14,273.18	0	14,273.18	DMU109						

	dmu81 - Paranã (eficiência:0.894309)									
Variável	Atual	Benchmark								
input1	861	861	0	861						
input2	272	272	135.758531	136.241469						
input3	1,709.00	1,709.00	0	1,709.00						
output1	770	861	0	861						
output2	5,793.00	6,477.63	6,011.06	12,488.69	DMU109,DMU111,DMU114					

	dmu82 - Pau D´Arco (eficiência:0.997368)										
Variável Atual Radial Folga Alvo Benchmark											
input1	380	380	0	380							
input2	300	300	203.193538	96.806462							
input3	1,644.00	1,644.00	7.235902	1,636.76							
output1	379	380	0	380	DMU59,DMU61,						
output2	14,815.00	14,854.09	0	14,854.09	DMU109						

	dmu83 - Pedro Afonso (eficiência:0.989865)										
Variável	Benchmark										
input1	296	296	0	296							
input2	101	101	16.621824	84.378176							
input3	3,808.00	3,808.00	2,208.70	1,599.30							
output1	293	296	0	296	DMU59,DMU88,						
output2	12,848.00	12,979.55	0	12,979.55							

	dmu84 - Peixe (eficiência:0.969730)										
Variável	Atual	Radial	Benchmark								
input1	891	891	14.55043	876.44957							
input2	126	126	0	126							
input3	1,275.00	1,275.00	279.641822	995.358178							
output1	847	873.439261	0	873.439261	DMU47,DMU109,						
output2	24,308.00	25,066.78	0	25,066.78	DMU114						

	dmu85 - Pequizeiro (eficiência:0.965517)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	261	261	0	261							
input2	178	178	83.675873	94.324127							
input3	1,340.00	1,340.00	120.064357	1,219.94							
output1	252	261	0	261	DMU59,DMU88,						
output2	14,846.00	15,376.21	0	15,376.21	, , ,						

	dmu86 - Colméia (eficiência:0.975556)										
Variável	Atual	Radial	Benchmark								
input1	450	450	0	450							
input2	275	275	193.887261	81.112739							
input3	3,675.00	3,675.00	1,414.67	2,260.33							
output1	439	450	0	450	DMU59,DMU88,						
output2	10,358.00	10,617.54	0	10,617.54	DMU109						

	dmu87 - Pindorama do Tocantins (eficiência:0.951899)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	395	395	0	395							
input2	130	130	16.585101	113.414899							
input3	1,122.00	1,122.00	0	1,122.00							
output1	376	395	0	395	DMU64,DMU88,						
output2	5,612.00	5,895.59	11,777.35	17,672.93							

	dmu88 - Piraquê (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	57	57	0	57							
input2	24	24	0	24							
input3	1,461.00	1,461.00	0	1,461.00							
output1	57	57	0	57							
output2	10,997.00	10,997.00	0	10,997.00	DMU88						

	dmu89 - Pium (eficiência:1.000000)									
Variável Atual Radial Folga Alvo Benchmark										
input1	549	549	0	549						
input2	248	248	0	248						
input3	292	292	0	292						
output1	537	537	0	537						
output2	21,809.00	21,809.00	0	21,809.00	DMU89					

	dmu90 - Ponte Alta do Bom Jesus (eficiência:0.981481)										
Variável	ável Atual Radial Folga Alvo Benchmark										
input1	432	432	0	432							
input2	267	267	215.511252	51.488748							
input3	2,994.00	2,994.00	0	2,994.00							
output1	424	432	0	432	DMU64,DMU88,						
output2	4,936.00	5,029.13	409.520368	5,438.65	DMU109						

	dmu91 - Ponte Alta do Tocantins (eficiência:0.980180)										
Variável Atual Radial Folga Alvo Benchmark											
input1	555	555	0	555							
input2	222	222	115.78471	106.21529							
input3	1,871.00	1,871.00	0	1,871.00							
output1	544	555	0	555	DMU59,DMU88,						
output2	12,107.00	12,351.81	658.552522	13,010.36	, , ,						

	dmu92 - Porto Alegre do Tocantins (eficiência:0.989011)										
Variável	iável Atual Radial Folga Alvo Benchmark										
input1	91	91	0	91							
input2	70	70	48.081633	21.918367							
input3	3,276.00	3,276.00	899.081633	2,376.92							
output1	90	91	0	91							
output2	2,104.00	2,127.38	2,373.54	4,500.92	DMU61,DMU64,DMU88						

	dmu93 - Porto Nacional (eficiência:1.000000)									
Variável Atual Radial Folga Alvo Benchmark										
input1	694	694	0	694						
input2	166	166	0	166						
input3	457	457	0	457						
output1	692	692	0	692						
output2	22,565.00	22,565.00	0	22,565.00	DMU93					

	dmu94 - Praia Norte (eficiência:1.000000)										
Variável	Benchmark										
input1	475	475	0	475							
input2	40	40	0	40							
input3	3,450.00	3,450.00	0	3,450.00							
output1	475	475	0	475							
output2	2,719.00	2,719.00	0	2,719.00	DMU94						

	dmu95 - Presidente Kennedy (eficiência:1.000000)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	161	161	0	161						
input2	64	64	0	64						
input3	946	946	0	946						
output1	161	161	0	161	DMU64,DMU88,					
output2	4,147.00	4,147.00	0	4,147.00	· · · · · · · · · · · · · · · · · · ·					

	dmu96 - Recursolândia (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	324	324	0	324							
input2	132	132	0	132							
input3	386	386	0	386							
output1	324	324	0	324							
output2	6,284.00	6,284.00	0	6,284.00	DMU96						

	dmu97 - Riachinho (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	305	305	0	305							
input2	97	97	0	97							
input3	1,275.00	1,275.00	0	1,275.00							
output1	305	305	0	305	DMU59,DMU88,						
output2	11,694.00	11,694.00	4,658.09	16,352.09	DMU109						

	dmu98 - Rio da Conceição (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	64	64	0	64							
input2	7	7	0	7							
input3	1,346.00	1,346.00	0	1,346.00							
output1	56	56	0	56							
output2	571	571	0	571	DMU98						

	dmu99 - Rio dos Bois (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	74	74	0	74							
input2	39	39	0	39							
input3	285	285	0	285							
output1	73	73	0	73							
output2	3,843.00	3,843.00	0	3,843.00	DMU99						

	dmu100 - Rio Sono (eficiência:0.996119)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	773	773	0	773						
input2	294	294	209.419832	84.580168						
input3	588	588	0	588						
output1	770	773	0	773	DMU59,DMU88,					
output2	7,126.00	7,153.76	772.652249	7,926.42	DMU109,DMU114					

	dmu101 - Sampaio (eficiência:0.991935)										
Variável	Atual	Radial	Benchmark								
input1	124	124	0	124							
input2	33	33	0	33							
input3	2,653.00	2,653.00	372.711375	2,280.29							
output1	123	124	0	124	DMU64,DMU94,						
output2	1,111.00	1,120.03	1,215.79	2,335.82	DMU117						

	dmu102 - Sandolândia (eficiência:0.995570)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	469	469	0	469							
input2	197	197	73.883208	123.116792							
input3	391	391	0	391							
output1	465	467.069222	0	467.069222	DMU89,DMU93,						
output2	12,829.00	12,886.09	2,988.59	15,874.68	DMU99						

	dmu103 - Santa Fé do Araguaia (eficiência:0.986047)									
Variável	Benchmark									
input1	60	60	0	60						
input2	23	23	0	23						
input3	2,034.00	2,034.00	510.048504	1,523.95						
output1	59	59.834881	0	59.834881	DMU29,DMU88,					
output2	5,552.00	5,630.56	4,183.97	9,814.54	, , ,					

	dmu104 - Santa Maria do Tocantins (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	178	178	0	178							
input2	97	97	0	97							
input3	365	365	0	365							
output1	178	178	0	178							
output2	2,670.00	2,670.00	0	2,670.00	DMU104						

	dmu105 - Santa Rosa do Tocantins (eficiência:0.962264)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	265	265	0	265					
input2	119	119	6.70782	112.29218					
input3	856	856	0	856					
output1	255	265	0	265	DMU64,DMU88,				
output2	2,785.00	2,894.22	13,812.71	16,706.93	, , , , , , , , , , , , , , , , , , , ,				

	dmu106 - Santa Tereza do Tocantins (eficiência:0.979866)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	149	149	0	149					
input2	78	78	18.201407	59.798593					
input3	1,810.00	1,810.00	781.244492	1,028.76					
output1	146	149	0	149	DMU64,DMU88,				
output2	5,843.00	5,963.06	0	5,963.06	, , ,				

	dmu107 - São Bento do Tocantins (eficiência:0.902913)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	206	206	0	206					
input2	73	73	0	73					
input3	745	745	0	745					
output1	186	206	0	206	DMU64,DMU88,				
output2	2,280.00	2,525.16	1,303.83	3,829.00	DMU109,DMU111				

	dmu108 - São Félix do Tocantins (eficiência:1.000000)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	69	69	0	69					
input2	39	39	0	39					
input3	721	721	0	721					
output1	69	69	0	69					
output2	1,372.00	1,372.00	0	1,372.00	DMU108				

	dmu109 - São Miguel do Tocantins (eficiência:1.000000)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	826	826	0	826					
input2	81	81	0	81					
input3	523	523	0	523					
output1	826	826	0	826					
output2	6,614.00	6,614.00	0	6,614.00	DMU109				

dmu110 - São Salvador do Tocantins (eficiência:0.848684)								
Variável	Atual	Radial	Folga	Alvo	Benchmark			
input1	152	152	0	152				
input2	44	44	0	44				
input3	2,023.00	2,023.00	152.326407	1,870.67				
output1	129	152	0	152	DMU64,DMU88,			
output2	1,873.00	2,206.95	770.4337	2,977.38	DMU109			

	dmu111 - São Sebastião do Tocantins (eficiência:1.000000)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	127	127	0	127					
input2	68	68	0	68					
input3	524	524	0	524					
output1	127	127	0	127					
output2	1,500.00	1,500.00	0	1,500.00	DMU111				

	dmu112 - São Valério (eficiência:0.937448)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	573	573	0	573					
input2	139	139	26.643939	112.356061					
input3	431	431	0	431					
output1	536	571.765152	0	571.765152	DMU93,DMU99,				
output2	8,270.00	8,821.82	4,954.08	13,775.91	DMU109				

dmu113 - Silvanópolis (eficiência:0.987500)								
Variável	Atual	Radial	Benchmark					
input1	400	400	0	400				
input2	204	204	122.219051	81.780949				
input3	2,102.00	2,102.00	0	2,102.00				
output1	395	400	0	400	DMU64,DMU88,			
output2	4,285.00	4,339.24	7,408.68	11,747.92	DMU109			

	dmu114 - Sítio Novo do Tocantins (eficiência:1.000000)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	1,135.00	1,135.00	0	1,135.00					
input2	155	155	0	155					
input3	2,168.00	2,168.00	0	2,168.00					
output1	1,135.00	1,135.00	0	1,135.00					
output2	10,065.00	10,065.00	0	10,065.00	DMU114				

	dmu115 - Sucupira (eficiência:0.918129)								
Variável	Atual	Radial	Folga	Alvo	Benchmark				
input1	171	171	0	171					
input2	59	59	0	59					
input3	2,864.00	2,864.00	1,271.29	1,592.71					
output1	157	171	0	171	DMU64,DMU88,				
output2	5,954.00	6,484.93	0	6,484.93	· · · · · · · · · · · · · · · · · · ·				

	dmu116 - Taguatinga (eficiência:0.929108)										
Variável Atual Radial Folga Alvo Benchmark											
input1	655	655	0	655							
input2	351	351	237.679028	113.320972							
input3	612	612	0	612							
output1	608	654.390807	0	654.390807	DMU59,DMU93,						
output2	13,407.00	14,429.96	0	14,429.96							

	dmu117 - Taipas do Tocantins (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	106	106	0	106							
input2	21	21	0	21							
input3	2,781.00	2,781.00	0	2,781.00							
output1	106	106	0	106							
output2	1,635.00	1,635.00	0	1,635.00	DMU117						

	dmu118 - Palmas (eficiência:1.000000)										
Variável Atual Radial Folga Alvo Benchmark											
input1	607	607	0	607							
input2	182	182	0	182							
input3	315	315	0	315							
output1	594	594	0	594							
output2	10,208.00	10,208.00	0	10,208.00	DMU118						

	dmu119 - Tocantínia (eficiência:0.993289)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	149	149	0	149							
input2	58	58	0	58							
input3	652	652	0	652							
output1	148	149	0	149	DMU64,DMU88, DMU108,DMU109,						
output2	2,226.00	2,241.04	523.117472	2,764.16							

	dmu120 - Tocantinópolis (eficiência:0.968858)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	289	289	0	289						
input2	127	127	19.591384	107.408616						
input3	1,093.00	1,093.00	0	1,093.00						
output1	280	289	0	289	DMU64,DMU88,					
output2	8,072.00	8,331.46	10,267.84	18,599.30	· · · · · · · · · · · · · · · · · · ·					

	dmu121 - Tupiratins (eficiência:0.975861)										
Variável Atual Radial Folga Alvo Benchmark											
input1	95	95	0	95							
input2	32	32	0	32							
input3	432	432	0	432							
output1	92	94.275699	0	94.275699	DMU12,DMU64,						
output2	1,036.00	1,061.63	14,024.19	15,085.82	DMU108,DMU109						

	dmu122 - Wanderlândia (eficiência:0.999798)										
Variável Atual Radial Folga Alvo Benchmark											
input1	467	467	0	467							
input2	162	162	33.592568	128.407432							
input3	2,596.00	2,596.00	1,288.70	1,307.30							
output1	466	466.094184	0	466.094184	DMU47,DMU59,						
output2	22,433.00	22,437.53	0	22,437.53	DMU114						

	dmu123 - Xambioá (eficiência:0.997686)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	168	168	0	168							
input2	55	55	0	55							
input3	1,030.00	1,030.00	505.135299	524.864701							
output1	167	167.387385	0	167.387385	DMU12,DMU59,						
output2	18,582.00	18,625.10	0	18,625.10							

Fonte: Elaboração do autor

 $\mathbf{AP\hat{E}NDICE}$ C - Resultados utilizando o modelo SBM e FDH, orientação output $-\,2006$

MI	ÉTODO SB	M	MÉTODO FDH			
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE	
1	DMU73	1.0000	1	DMU39	1.0000	
1	DMU39	1.0000	1	DMU127	1.0000	
1	DMU67	1.0000	1	DMU80	1.0000	
1	DMU59	1.0000	1	DMU136	1.0000	
1	DMU131	1.0000	1	DMU21	1.0000	
2	DMU66	0.6502	1	DMU58	1.0000	
3	DMU94	0.6281	1	DMU73	1.0000	
4	DMU136	0.6021	1	DMU23	1.0000	
5	DMU21	0.5713	1	DMU126	1.0000	
6	DMU76	0.5377	1	DMU75	1.0000	
7	DMU115	0.5209	1	DMU17	1.0000	
8	DMU13	0.4859	1	DMU91	1.0000	
9	DMU54	0.4775	1	DMU96	1.0000	
10	DMU32	0.4510	1	DMU110	1.0000	
11	DMU30	0.4095	1	DMU115	1.0000	
12	DMU5	0.3884	1	DMU51	1.0000	
13	DMU23	0.3762	1	DMU31	1.0000	
14	DMU110	0.3601	1	DMU38	1.0000	
15	DMU37	0.3494	1	DMU29	1.0000	
16	DMU26	0.3474	1	DMU30	1.0000	
17	DMU44	0.3242	1	DMU9	1.0000	
18	DMU80	0.3198	1	DMU32	1.0000	
19	DMU45	0.3137	1	DMU33	1.0000	
20	DMU53	0.2887	1	DMU37	1.0000	
21	DMU51	0.2865	1	DMU11	1.0000	
22	DMU104	0.2641	1	DMU12	1.0000	
23	DMU25	0.2631	1	DMU44	1.0000	
24	DMU96	0.2625	1	DMU45	1.0000	
25	DMU106	0.2619	1	DMU46	1.0000	
26	DMU58	0.2543	1	DMU47	1.0000	
27	DMU129	0.2525	1	DMU48	1.0000	
28	DMU12	0.2518	1	DMU49	1.0000	
29	DMU137	0.2464	1	DMU13	1.0000	
30	DMU11	0.2456	1	DMU52	1.0000	
31	DMU95	0.2447	1	DMU53	1.0000	
32	DMU100	0.2436	1	DMU54	1.0000	
33	DMU27	0.2390	1	DMU55	1.0000	
34	DMU75	0.2374	1	DMU56	1.0000	
35	DMU139	0.2356	1	DMU57	1.0000	

continua...

Ml	ÉTODO SB	M	MÉTODO FDH			
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE	
36	DMU117	0.2353	1	DMU14	1.0000	
37	DMU3	0.2338	1	DMU59	1.0000	
38	DMU15	0.2287	1	DMU63	1.0000	
39	DMU57	0.2273	1	DMU65	1.0000	
40	DMU38	0.2266	1	DMU66	1.0000	
41	DMU28	0.2197	1	DMU67	1.0000	
42	DMU48	0.2163	1	DMU71	1.0000	
43	DMU127	0.2100	1	DMU15	1.0000	
44	DMU63	0.2032	1	DMU74	1.0000	
45	DMU91	0.1995	1	DMU16	1.0000	
46	DMU43	0.1968	1	DMU76	1.0000	
47	DMU6	0.1946	1	DMU3	1.0000	
48	DMU16	0.1939	1	DMU83	1.0000	
49	DMU111	0.1915	1	DMU86	1.0000	
50	DMU18	0.1908	1	DMU87	1.0000	
51	DMU88	0.1893	1	DMU88	1.0000	
52	DMU31	0.1810	1	DMU89	1.0000	
53	DMU126	0.1797	1	DMU19	1.0000	
54	DMU132	0.1769	1	DMU92	1.0000	
55	DMU46	0.1699	1	DMU93	1.0000	
56	DMU17	0.1670	1	DMU94	1.0000	
57	DMU2	0.1619	1	DMU95	1.0000	
58	DMU50	0.1599	1	DMU20	1.0000	
59	DMU22	0.1588	1	DMU97	1.0000	
60	DMU107	0.1571	1	DMU99	1.0000	
61	DMU24	0.1546	1	DMU100	1.0000	
62		0.1501	1	DMU103	1.0000	
63	DMU118	0.1499	1	DMU104	1.0000	
64	DMU8	0.1406	1	DMU105	1.0000	
65	DMU113	0.1397	1	DMU106	1.0000	
66	DMU77	0.1367	1	DMU107	1.0000	
67	DMU78	0.1359	1	DMU109	1.0000	
68	DMU99	0.1348	1	DMU5	1.0000	
69	DMU120	0.1333	1	DMU113	1.0000	
70	DMU81	0.1329	1	DMU6	1.0000	
71	DMU4	0.1306	1	DMU119	1.0000	
72	DMU114	0.1293	1	DMU120	1.0000	
73	DMU36	0.1288	1	DMU123	1.0000	
74	DMU116	0.1271	1	DMU24	1.0000	
75	DMU68	0.1254	1	DMU26	1.0000	
76	DMU86	0.1250	1	DMU128	1.0000	
77	DMU93	0.1226	1	DMU130	1.0000	

Ml	MÉTODO SBM			MÉTODO FDH			
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE		
78	DMU9	0.1210	1	DMU131	1.0000		
79	DMU84	0.1185	1	DMU133	1.0000		
80	DMU60	0.1182	1	DMU28	1.0000		
81	DMU62	0.1175	1	DMU137	1.0000		
82	DMU138	0.1156	1	DMU138	1.0000		
83	DMU135	0.1149	1	DMU139	1.0000		
84	DMU87	0.1149	2	DMU90	0.9968		
85	DMU47	0.1146	3	DMU129	0.9782		
86	DMU71	0.1141	4	DMU27	0.9750		
87	DMU108	0.1132	5	DMU8	0.9693		
88	DMU90	0.1120	6	DMU36	0.9615		
89	DMU1	0.1113	7	DMU134	0.9521		
90	DMU83	0.1085	8	DMU68	0.9474		
91	DMU55	0.1065	9	DMU10	0.9396		
92	DMU56	0.1058	10	DMU18	0.9309		
93	DMU119	0.1050	11	DMU118	0.9230		
94	DMU35	0.1042	12	DMU60	0.9208		
95	DMU128	0.1024	13	DMU69	0.9167		
96	DMU130	0.1017	14	DMU78	0.9000		
97	DMU10	0.1012	15	DMU64	0.8893		
98	DMU29	0.1011	16	DMU125	0.8883		
99	DMU97	0.0995	17	DMU102	0.8851		
100	DMU133	0.0984	18	DMU7	0.8670		
101	DMU102	0.0974	19	DMU132	0.8668		
102	DMU33	0.0971	20	DMU79	0.8642		
103	DMU105	0.0970	21	DMU50	0.8571		
104	DMU40	0.0966	22	DMU111	0.8469		
105	DMU52	0.0960	23	DMU42	0.8419		
106	DMU34	0.0953	24	DMU124	0.8404		
107	DMU72	0.0948	25	DMU122	0.8265		
108	DMU65	0.0947	26	DMU82	0.8192		
109	DMU82	0.0939	27	DMU112	0.8187		
110	DMU92	0.0939	28	DMU2	0.8138		
111	DMU19	0.0931	29	DMU101	0.8076		
112	DMU123	0.0927	30	DMU41	0.8029		
113	DMU64	0.0901	31	DMU81	0.8009		
114	DMU14	0.0898	32	DMU114	0.7963		
115	DMU89	0.0893	33	DMU98	0.7925		
116	DMU98	0.0825	34	DMU62	0.7784		
117	DMU49	0.0821	35	DMU121	0.7547		
118	DMU109	0.0790	36	DMU22	0.7464		
119	DMU61	0.0762	37	DMU72	0.7232		

Ml	ÉTODO SB	M	MÉTODO FDH		
ORDEM	DMU	SCORE	ORDEM	DMU	SCORE
120	DMU41	0.0745	38	DMU135	0.7143
121	DMU103	0.0721	39	DMU116	0.7117
122	DMU85	0.0686	40	DMU4	0.7100
123	DMU69	0.0686	41	DMU117	0.6947
124	DMU74	0.0680	42	DMU77	0.6911
125	DMU70	0.0655	43	DMU85	0.6649
126	DMU20	0.0652	44	DMU61	0.6642
127	DMU7	0.0647	45	DMU25	0.6346
128	DMU124	0.0571	46	DMU1	0.5745
129	DMU79	0.0500	47	DMU108	0.5692
130	DMU101	0.0485	48	DMU34	0.5683
131	DMU122	0.0444	49	DMU84	0.5532
132	DMU134	0.0422	50	DMU35	0.5153
133	DMU121	0.0385	51	DMU40	0.5106
134	DMU112	0.0375	52	DMU43	0.3846
135	DMU125	0.0278	53	DMU70	0.2591

Fonte: Elaboração do autor

APÊNDICE D – Folgas, Alvos e Benchmark's – 2006

	dmu1 - ABREULÂNDIA(eficiência:0.510978)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	243	243	0	243							
input2	67	67	35.893753	31.106247							
input3	564	564	144.913726	419.086274							
output1	108	211.359379	0	211.359379							
output2	5,540.00	10,841.95	0	10,841.95	DMU39,DMU73,DMU96						

	dmu2 - AGUIARNÓPOLIS (eficiência:0.782545)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	224	224	0	224							
input2	99	99	78.164894	20.835106							
input3	712	712	352.779255	359.220745							
output1	153	195.515957	0	195.515957							
output2	8,241.00	10,531.03	174.213183	10,705.24	DMU39,DMU96						

	dmu3 - ALIANÇA DO TOCANTINS (eficiência:0.886131)										
Variável	Atual	Benchmark									
input1	293	293	0	293							
input2	138	138	76.094561	61.905439							
input3	694	694	100.303038	593.696962							
output1	223	251.65581	0	251.65581							
output2	11,091.00	12,516.21	0	12,516.21	DMU39,DMU73,DMU96						

	dmu4 - ALMAS (eficiência:0.619713)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	368	368	0	368							
input2	58	58	0	58							
input3	1,049.00	1,049.00	279.813401	769.186599							
output1	164	264.638765	0	264.638765							
output2	8,021.00	12,943.09	0	12,943.09	DMU9,DMU39,DMU96,DMU104						

	dmu5 - ALVORADA (eficiência:0.586908)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	208	208	0	208							
input2	37	37	0	37							
input3	509	509	46.807257	462.192743							
output1	89	151.642097	0	151.642097							
output2	17,149.00	29,219.22	0	29,219.22	DMU39,DMU66,DMU73,DMU96						

	dmu6 - ANANÁS (eficiência:0.633373)										
Variável											
input1	262	262	0	262							
input2	91	91	20.201955	70.798045							
input3	845	845	232.832813	612.167187							
output1	137	216.302084	0	216.302084							
output2	13,451.00	21,237.08	0	21,237.08	DMU39,DMU73,DMU96						

	dmu7 - ANGICO (eficiência:0.672770)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	280	280	0	280							
input2	103	103	52.079787	50.920213							
input3	1,075.00	1,075.00	540.183511	534.816489							
output1	163	242.281915	0	242.281915							
output2	4,707.00	6,996.45	4,046.28	11,042.73	DMU39,DMU96						

	dmu8 - APARECIDA DO RIO NEGRO (eficiência:0.656106)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	285	285	0	285							
input2	112	112	43.1643	68.8357							
input3	980	980	360.547671	619.452329							
output1	158	240.814796	0	240.814796							
output2	10,749.00	16,383.03	0	16,383.03	DMU39,DMU73,DMU96						

	dmu9 - ARAGOMINAS (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	899	899	0	899							
input2	152	152	0	152							
input3	2,273.00	2,273.00	0	2,273.00							
output1	469	469	0	469							
output2	17,041.00	17,041.00	0	17,041.00	DMU9						

	dmu10 - ARAGUACEMA (eficiência:0.696732)										
Variável	Atual	Radial	Benchmark								
input1	481	481	0	481							
input2	118	118	0	118							
input3	1,347.00	1,347.00	230.473546	1,116.53							
output1	249	357.382896	0	357.382896							
output2	10,179.00	14,609.64	0	14,609.64	DMU9,DMU39,DMU96,DMU104						

	dmu11 - ARAGUAÇU (eficiência:0.672664)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	806	806	116.749566	689.250434							
input2	158	158	0	158							
input3	1,738.00	1,738.00	0	1,738.00							
output1	253	376.116193	0	376.116193							
output2	40,468.00	60,160.75	0	60,160.75	DMU53,DMU66,DMU96,DMU104						

	dmu12 - ARAGUAÍNA (eficiência:0.986000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	1,004.00	1,004.00	0	1,004.00							
input2	174	174	0	174							
input3	3,056.00	3,056.00	678.476567	2,377.52							
output1	482	488.843647	0	488.843647							
output2	48,938.00	49,632.84	0	49,632.84	DMU39,DMU66,DMU96,DMU104						

	dmu13 - ARAGUANÃ (eficiência:0.920343)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	137	137	0	137						
input2	24	24	11.548985	12.451015						
input3	493	493	217.763474	275.236526						
output1	107	116.260962	0	116.260962						
output2	10,770.00	11,702.15	0	11,702.15	DMU39,DMU73,DMU131					

	dmu14 - ARAGUATINS(eficiência:1.000000)									
Variável	Atual	Benchmark								
input1	1,306.00	1,306.00	0	1,306.00						
input2	180	180	0	180						
input3	3,166.00	3,166.00	0	3,166.00						
output1	547	547	0	547						
output2	16,637.00	16,637.00	0	16,637.00	DMU14					

	dmu15 - ARAPOEMA (eficiência:0.797753)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	307	307	0	307						
input2	136	136	32.449711	103.550289						
input3	1,177.00	1,177.00	384.894132	792.105868						
output1	200	250.704093	0	250.704093						
output2	19,544.00	24,498.80	0	24,498.80	DMU39,DMU73,DMU96					

	dmu16 - ARRAIAS (eficiência:0.949342)									
Variável	Atual	Radial	Benchmark							
input1	924	924	0	924						
input2	152	152	0	152						
input3	3,348.00	3,348.00	1,141.20	2,206.80						
output1	434	457.158616	0	457.158616						
output2	34,032.00	35,847.98	0	35,847.98	DMU9,DMU39,DMU92,DMU104					

	dmu17 - AUGUSTINÓPOLIS (eficiência:0.952191)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	425	425	0	425						
input2	154	154	25.180851	128.819149						
input3	1,242.00	1,242.00	252.515957	989.484043						
output1	346	363.37234	0	363.37234						
output2	8,225.00	8,637.97	3,278.62	11,916.59	DMU39,DMU96					

	dmu18 - AURORA DO TOCANTINS (eficiência:0.719256)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	282	282	0	282						
input2	63	63	9.263717	53.736283						
input3	624	624	75.026339	548.973661						
output1	175	243.306842	0	243.306842						
output2	8,388.00	11,662.04	0	11,662.04	DMU39,DMU73,DMU96					

	dmu19 - AXIXÁ DO TOCANTINS (eficiência:0.791683)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	306	306	0	306						
input2	135	135	70.111702	64.888298						
input3	866	866	249.656915	616.343085						
output1	209	263.994681	0	263.994681						
output2	5,881.00	7,428.48	3,770.94	11,199.42	DMU39,DMU96					

	dmu20 - BABAÇULÂNDIA (eficiência:0.897734)									
Variável Atual Radial Folga Alvo Benchmark										
input1	943	943	0	943						
input2	210	210	0	210						
input3	2,424.00	2,424.00	84.989789	2,339.01						
output1	481	535.79344	0	535.79344						
output2	11,614.00	12,937.02	15,294.96	28,231.98	DMU92,DMU96,DMU104					

	dmu21 - BANDEIRANTES DO TOCANTINS (eficiência:0.819956)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	190	190	0	190							
input2	29	29	0	29							
input3	559	559	165.601638	393.398362							
output1	120	146.349322	0	146.349322							
output2	20,376.00	24,850.11	0	24,850.11	DMU39,DMU66,DMU73,DMU96						

	dmu22 - BARRA DO OURO (eficiência:0.579340)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	217	217	0	217						
input2	63	63	37.151109	25.848891						
input3	609	609	231.998539	377.001461						
output1	108	186.41918	0	186.41918						
output2	7,950.00	13,722.52	0	13,722.52	DMU39,DMU73,DMU96					

	dmu23 - BARROLÂNDIA (eficiência:0.906351)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	210	210	0	210						
input2	72	72	47.937813	24.062187						
input3	536	536	172.010125	363.989875						
output1	163	179.842069	0	179.842069						
output2	13,023.00	14,368.61	0	14,368.61	DMU39,DMU73,DMU96					

	dmu24 - BERNARDO SAYÃO (eficiência:0.894552)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	689	689	17.942775	671.057225						
input2	225	225	0	225						
input3	1,707.00	1,707.00	0	1,707.00						
output1	451	504.163188	0	504.163188						
output2	19,651.00	21,967.43	0	21,967.43	DMU53,DMU66,DMU96,DMU104					

	dmu25 - BOM JESUS DO TOCANTINS (eficiência:0.330857)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	135	135	0	135							
input2	27	27	0	27							
input3	454	454	126.648778	327.351222							
output1	33	99.741102	0	99.741102							
output2	9,816.00	29,668.44	0	29,668.44	DMU39,DMU66,DMU73,DMU96						

	dmu26 - BRASILÂNDIA DO TOCANTINS (eficiência:0.589296)										
Variável	ariável Atual Radial Folga Alvo Benchmark										
input1	148	148	0	148							
input2	28	28	10.676748	17.323252							
input3	472	472	177.613187	294.386813							
output1	71	120.482655	0	120.482655							
output2	11,631.00	19,737.10	0	19,737.10	DMU39,DMU73,DMU131						

	dmu27 - BREJINHO DE NAZARÉ (eficiência:0.583614)									
Variável	Variável Atual Radial Folga Alvo Benchmark									
input1	253	253	0	253						
input2	107	107	19.673151	87.326849						
input3	713	713	31.558105	681.441895						
output1	117	200.474925	0	200.474925						
output2	16,818.00	28,816.99	0	28,816.99	DMU66,DMU73,DMU96					

	dmu28 - BURITI DO TOCANTINS (eficiência:0.860645)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	158	158	0	158							
input2	64	64	52.590604	11.409396							
input3	480	480	194.90604	285.09396							
output1	119	138.268456	0	138.268456							
output2	6,251.00	7,263.16	417.718516	7,680.88	DMU39,DMU131						

	dmu29 - CACHOERINHA (eficiência:0.764302)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	88	88	0	88							
input2	48	48	42.228188	5.771812							
input3	283	283	54.281879	228.718121							
output1	59	77.194631	0	77.194631							
output2	2,102.00	2,750.22	1,283.14	4,033.36	DMU39,DMU131						

	dmu30 - CAMPOS LINDOS (eficiência:0.754707)										
Variável	Atual	Radial	Benchmark								
input1	408	408	0	408							
input2	103	103	17.782948	85.217052							
input3	1,492.00	1,492.00	413.40451	1,078.60							
output1	156	206.702603	0	206.702603							
output2	54,627.00	72,381.69	0	72,381.69	DMU66,DMU73,DMU96						

	dmu31 - CARIRI DO TOCANTINS (eficiência:0.873646)										
Variável	Atual	Radial	Benchmark								
input1	362	362	0	362							
input2	195	195	92.319295	102.680705							
input3	1,066.00	1,066.00	239.162866	826.837134							
output1	269	307.904988	0	307.904988							
output2	12,427.00	14,224.29	0	14,224.29	DMU39,DMU73,DMU96						

	dmu32 - CARMOLÂNDIA (eficiência:0.587372)										
Variável	Benchmark										
input1	96	96	0	96							
input2	9	9	0	9							
input3	318	318	36.380875	281.619125							
output1	37	62.992453	0	62.992453							
output2	6,935.00	11,806.83	0	11,806.83	DMU59,DMU67,DMU73,DMU131						

	dmu33 - CARRASCO BONITO (eficiência:0.775685)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	100	100	0	100							
input2	73	73	66.261745	6.738255							
input3	349	349	110.61745	238.38255							
output1	68	87.66443	0	87.66443							
output2	2,420.00	3,119.82	1,538.83	4,658.65	DMU39,DMU131						

	dmu34 - CASEARA (eficiência:0.463886)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	385	385	0	385							
input2	66	66	0	66							
input3	1,164.00	1,164.00	355.351225	808.648775							
output1	128	275.929837	0	275.929837							
output2	6,973.00	15,031.71	0	15,031.71	DMU9,DMU39,DMU96,DMU104						

	dmu35 - CENTENÁRIO (eficiência:0.391284)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	296	296	0	296							
input2	50	50	0	50							
input3	726	726	150.80024	575.19976							
output1	94	240.23462	0	240.23462							
output2	5,488.00	14,025.61	0	14,025.61	DMU39,DMU66,DMU96,DMU104						

	dmu36 - CHAPADA DE AREIA (eficiência:0.452289)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	128	128	0	128						
input2	37	37	26.860905	10.139095						
input3	343	343	79.109068	263.890932						
output1	50	110.548824	0	110.548824						
output2	3,737.00	8,262.42	0	8,262.42	DMU39,DMU73,DMU131					

	dmu37 - CHAPADA DE NATIVIDADE (eficiência:0.910306)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	447	447	303.821968	143.178032							
input2	7	7	0	7							
input3	1,024.00	1,024.00	660.103808	363.896192							
output1	24	26.364751	0	26.364751							
output2	10,335.00	11,353.32	0	11,353.32	DMU59,DMU67,DMU73						

	dmu38 - COLINAS DO TOCANTINS (eficiência:0.840778)										
Variável	Atual	Radial	Benchmark								
input1	409	409	0	409							
input2	128	128	0	128							
input3	1,275.00	1,275.00	259.634052	1,015.37							
output1	274	325.888603	0	325.888603							
output2	20,568.00	24,463.05	0	24,463.05	DMU39,DMU66,DMU73,DMU96						

	dmu39 - COMBINADO (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	215	215	0	215							
input2	16	16	0	16							
input3	331	331	0	331							
output1	188	188	0	188							
output2	10,651.00	10,651.00	0	10,651.00	DMU39						

	dmu40 - CONCEIÇÃO DO TOCANTINS (eficiência:0.447377)										
Variável Atual Radial Folga Alvo Benchmark											
input1	247	247	0	247							
input2	48	48	14.432164	33.567836							
input3	832	832	398.955496	433.044504							
output1	96	214.583963	0	214.583963							
output2	4,910.00	10,975.08	0	10,975.08	DMU39,DMU73,DMU96						

	dmu41 - COUTO MAGALHÃES (eficiência:0.549097)										
Variável Atual Radial Folga Alvo Benchmark											
input1	619	619	77.802294	541.197706							
input2	145	145	0	145							
input3	1,298.00	1,298.00	0	1,298.00							
output1	220	400.657593	0	400.657593							
output2	8,470.00	15,425.32	0	15,425.32	DMU9,DMU39,DMU96,DMU104						

	dmu42 - CRISTALÂNDIA (eficiência:0.647729)										
Variável Atual Radial Folga Alvo Benchmark											
input1	312	312	0	312							
input2	120	120	38.37761	81.62239							
input3	783	783	86.66731	696.33269							
output1	171	263.999442	0	263.999442							
output2	10,329.00	15,946.49	0	15,946.49	DMU39,DMU73,DMU96						

	dmu43 - CRIXÁS DO TOCANTINS (eficiência:0.273064)										
Variável Atual Radial Folga Alvo Benchmark											
input1	105	105	0	105							
input2	54	54	32.929673	21.070327							
input3	342	342	63.630099	278.369901							
output1	20	73.242871	0	73.242871							
output2	8,463.00	30,992.72	0	30,992.72	DMU39,DMU73,DMU131						

	dmu44 - DARCINÓPOLIS (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	525	525	0	525							
input2	34	34	0	34							
input3	1,243.00	1,243.00	0	1,243.00							
output1	240	240	0	240							
output2	12,195.00	12,195.00	0	12,195.00	DMU44						

	dmu45 - DIANÓPOLIS (eficiência:0.565636)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	381	381	0	381							
input2	64	64	0	64							
input3	1,062.00	1,062.00	177.555699	884.444301							
output1	127	224.526007	0	224.526007							
output2	26,488.00	46,828.70	0	46,828.70	DMU39,DMU66,DMU96,DMU104						

	dmu46 - DIVINÓPOLIS DO TOCANTINS (eficiência:0.895794)										
Variável Atual Radial Folga Alvo Benchmark											
input1	592	592	0	592							
input2	79	79	0	79							
input3	1,387.00	1,387.00	37.532788	1,349.47							
output1	288	321.502374	0	321.502374							
output2	13,404.00	14,963.26	0	14,963.26	DMU9,DMU39,DMU92,DMU104						

	dmu47 - DOIS IRMÃOS DO TOCANTINS (eficiência:0.953669)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	927	927	0	927							
input2	174	174	0	174							
input3	2,797.00	2,797.00	468.032037	2,328.97							
output1	473	495.97945	0	495.97945							
output2	19,373.00	20,314.19	0	20,314.19	DMU9,DMU92,DMU96,DMU104						

	dmu48 - DUERÉ (eficiência:0.796964)										
Variável	Atual	Radial	Benchmark								
input1	462	462	0	462							
input2	230	230	82.242785	147.757215							
input3	1,170.00	1,170.00	0	1,170.00							
output1	286	358.861945	0	358.861945							
output2	22,738.00	28,530.78	0	28,530.78	DMU39,DMU66,DMU73,DMU96						

	dmu49 - ESPERANTINA (eficiência:0.952541)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	439	439	0	439							
input2	111	111	0	111							
input3	1,293.00	1,293.00	281.816389	1,011.18							
output1	327	343.292214	0	343.292214							
output2	5,336.00	5,601.86	6,647.37	12,249.23	DMU9,DMU39,DMU96						

	dmu50 - FÁTIMA (eficiência:0.509926)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	190	190	0	190							
input2	38	38	22.932171	15.067829							
input3	454	454	140.342837	313.657163							
output1	84	164.729836	0	164.729836							
output2	5,799.00	11,372.24	0	11,372.24	DMU39,DMU73,DMU131						

	dmu51 - FIGUEIRÓPOLIS (eficiência:0.718941)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	287	287	0	287							
input2	106	106	41.955175	64.044825							
input3	639	639	0	639							
output1	161	223.940516	0	223.940516							
output2	17,281.00	24,036.75	0	24,036.75	DMU39,DMU66,DMU73,DMU96						

	dmu52 - FILADÉLFIA (eficiência:0.800590)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	653	653	0	653							
input2	288	288	35.472702	252.527298							
input3	2,019.00	2,019.00	279.877313	1,739.12							
output1	408	509.624106	0	509.624106							
output2	15,443.00	19,289.52	0	19,289.52	DMU53,DMU83,DMU96						

	dmu53 - FORMOSO DO ARAGUAIA (eficiência:1.000000)										
Variável	ariável Atual Radial Folga Alvo Benchmark										
input1	1,039.00	1,039.00	0	1,039.00							
input2	499	499	0	499							
input3	2,980.00	2,980.00	0	2,980.00							
output1	518	518	0	518							
output2	89,868.00	89,868.00	0	89,868.00	DMU53						

	dmu54 - FORTALEZA DO TABOCÃO (eficiência:0.846881)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	69	69	18.46323	50.53677							
input2	10	10	0	10							
input3	149	149	0	149							
output1	22	25.977691	8.040505	34.018196							
output2	7,781.00	9,187.84	0	9,187.84	DMU73,DMU110,DMU131						

	dmu55 - GOIANORTE (eficiência:0.857243)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	730	730	82.436398	647.563602							
input2	236	236	6.456594	229.543406							
input3	1,683.00	1,683.00	0	1,683.00							
output1	438	510.940091	0	510.940091							
output2	13,705.00	15,987.29	0	15,987.29	DMU83,DMU96,DMU104						

	dmu56 - GOIATINS (eficiência:0.883869)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	871	871	0	871							
input2	193	193	0	193							
input3	2,903.00	2,903.00	721.555465	2,181.44							
output1	450	509.125226	0	509.125226							
output2	19,558.00	22,127.71	0	22,127.71	DMU9,DMU92,DMU96,DMU104						

	dmu57 - GUARAÍ (eficiência:0.971338)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	674	674	0	674							
input2	124	124	0	124							
input3	1,714.00	1,714.00	146.713102	1,567.29							
output1	377	388.124392	0	388.124392							
output2	26,527.00	27,309.75	0	27,309.75	DMU9,DMU39,DMU96,DMU104						

	dmu58 - GURUPI (eficiência:0.929987)										
Variável	Atual	Benchmark									
input1	515	515	0	515							
input2	191	191	12.890229	178.109771							
input3	1,374.00	1,374.00	47.390545	1,326.61							
output1	383	411.83386	0	411.83386							
output2	23,349.00	25,106.81	0	25,106.81	DMU66,DMU73,DMU96						

	dmu59 - IPUEIRAS (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	156	156	0	156							
input2	3	3	0	3							
input3	383	383	0	383							
output1	18	18	0	18							
output2	5,158.00	5,158.00	0	5,158.00	DMU59						

	dmu60 - ITACAJÁ (eficiência:0.703792)										
Variável Atual Radial Folga Alvo Benchmark											
input1	535	535	0	535							
input2	103	103	0	103							
input3	1,275.00	1,275.00	32.940346	1,242.06							
output1	244	346.693345	0	346.693345							
output2	11,381.00	16,170.97	0	16,170.97	DMU9,DMU39,DMU96,DMU104						

	dmu61 - ITAGUATINS (eficiência:0.535096)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	471	471	0	471							
input2	96	96	0	96							
input3	1,525.00	1,525.00	448.091788	1,076.91							
output1	176	328.912854	0	328.912854							
output2	7,354.00	13,743.32	0	13,743.32	DMU9,DMU39,DMU96,DMU104						

	dmu62 - ITAPIRATINS (eficiência:0.576475)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	423	423	0	423							
input2	123	123	0	123							
input3	1,206.00	1,206.00	205.828711	1,000.17							
output1	198	343.46648	0	343.46648							
output2	11,298.00	19,598.41	0	19,598.41	DMU39,DMU66,DMU73,DMU96						

	dmu63 - ITAPORÃ DO TOCANTINS (eficiência:0.918003)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	361	361	0	361							
input2	190	190	88.176493	101.823507							
input3	1,361.00	1,361.00	538.747288	822.252712							
output1	282	307.188432	0	307.188432							
output2	12,950.00	14,106.70	0	14,106.70	DMU39,DMU73,DMU96						

	dmu64 - JAÚ DO TOCANTINS (eficiência:0.600107)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	619	619	125.171196	493.828804							
input2	131	131	0	131							
input3	1,155.00	1,155.00	0	1,155.00							
output1	225	374.933395	0	374.933395							
output2	9,433.00	15,718.87	0	15,718.87	DMU9,DMU39,DMU96,DMU104						

	dmu65 - JUARINA (eficiência:0.785162)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	301	301	0	301							
input2	127	127	64.797872	62.202128							
input3	765	765	164.335106	600.664894							
output1	204	259.819149	0	259.819149							
output2	5,378.00	6,849.55	4,319.74	11,169.29	DMU39,DMU96						

	dmu66 - LAGOA DA CONFUSÃO (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	432	432	0	432							
input2	78	78	0	78							
input3	1,142.00	1,142.00	0	1,142.00							
output1	193	193	0	193							
output2	84,776.00	84,776.00	0	84,776.00	DMU66						

	dmu67 - LAGOA DO TOCANTINS (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	225	225	0	225							
input2	4	4	0	4							
input3	568	568	0	568							
output1	116	116	0	116							
output2	2,485.00	2,485.00	0	2,485.00	DMU67						

	dmu68 - LAJEADO (eficiência:0.756018)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	44	44	5.821138	38.178862						
input2	12	12	3.772358	8.227642						
input3	92	92	0	92						
output1	18	23.808943	0	23.808943						
output2	1,082.00	1,431.18	1,397.91	2,829.09	DMU39,DMU110					

	dmu69 - LAVANDEIRA (eficiência:0.635222)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	198	198	0	198							
input2	95	95	80.369128	14.630872							
input3	613	613	295.691275	317.308725							
output1	110	173.167785	0	173.167785							
output2	3,502.00	5,513.03	4,252.14	9,765.17	DMU39,DMU131						

	dmu70 - LIZARDA (eficiência:0.188602)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	376	376	9.137274	366.862726							
input2	27	27	0	27							
input3	786	786	0.605335	785.394665							
output1	40	212.086704	0	212.086704							
output2	2,760.00	14,633.98	0	14,633.98	DMU39,DMU44,DMU66						

	dmu71 - LUZINÓPOLIS (eficiência:0.671852)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	136	136	0	136							
input2	34	34	24.362416	9.637584							
input3	444	444	176.624161	267.375839							
output1	80	119.073826	0	119.073826							
output2	3,399.00	5,059.15	1,475.37	6,534.52	DMU39,DMU131						

	dmu72 - MARIANÓPOLIS DO TOCANTINS (eficiência:0.583629)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	654	654	54.779427	599.220573							
input2	231	231	11.518284	219.481716							
input3	1,551.00	1,551.00	0	1,551.00							
output1	277	474.616675	0	474.616675							
output2	13,644.00	23,377.87	0	23,377.87	DMU53,DMU66,DMU96						

	dmu73 - MATEIROS (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	86	86	0	86							
input2	23	23	0	23							
input3	272	272	0	272							
output1	52	52	0	52							
output2	36,479.00	36,479.00	0	36,479.00	DMU73						

	dmu74 - MAURILÂNDIA DO TOCANTINS (eficiência:0.850533)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	356	356	9.926209	346.073791						
input2	107	107	20.582697	86.417303						
input3	742	742	0	742						
output1	253	297.46056	0	297.46056						
output2	3,054.00	3,590.69	7,850.24	11,440.93	DMU39,DMU96					

	dmu75 - MIRACEMA DO TOCANTINS (eficiência:0.909416)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	699	699	0	699						
input2	212	212	0	212						
input3	1,821.00	1,821.00	35.954762	1,785.05						
output1	417	458.536188	0	458.536188						
output2	35,676.00	39,229.59	0	39,229.59	DMU53,DMU66,DMU96,DMU104					

	dmu76 - MIRANORTE (eficiência:0.745812)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	244	244	18.550215	225.449785						
input2	28	28	0	28						
input3	626	626	168.979117	457.020883						
output1	120	160.898427	0	160.898427						
output2	21,320.00	28,586.29	0	28,586.29	DMU39,DMU66,DMU73					

	dmu77 - MONTE DO CARMO (eficiência:0.585142)									
Variável	Atual	Radial	Benchmark							
input1	779	779	0	779						
input2	234	234	0	234						
input3	2,052.00	2,052.00	63.409252	1,988.59						
output1	283	483.642886	0	483.642886						
output2	24,657.00	42,138.45	0	42,138.45	DMU53,DMU66,DMU96,DMU104					

	dmu78 - MONTE SANTO DO TOCANTINS (eficiência:0.638435)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	194	194	0	194						
input2	73	73	58.31	14.69						
input3	573	573	257.928441	315.071559						
output1	108	169.163698	0	169.163698						
output2	6,557.00	10,270.43	0	10,270.43	DMU39,DMU73,DMU131					

	dmu79 - PALMEIRAS DO TOCANTINS (eficiência:0.691152)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	534	534	0	534						
input2	170	170	0	170						
input3	1,802.00	1,802.00	485.955005	1,316.04						
output1	299	432.610971	0	432.610971						
output2	6,309.00	9,128.24	3,615.51	12,743.74	DMU9,DMU39,DMU96					

	dmu80 - MURICILÂNDIA (eficiência:0.961313)										
Variável	Atual	Radial	Benchmark								
input1	312	312	0	312							
input2	46	46	0	46							
input3	748	748	140.741193	607.258807							
output1	231	240.296348	0	240.296348							
output2	12,269.00	12,762.75	0	12,762.75	DMU9,DMU39,DMU96,DMU104						

	dmu81 - NATIVIDADE (eficiência:0.651571)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	420	420	0	420							
input2	67	67	0	67							
input3	1,057.00	1,057.00	144.750264	912.249736							
output1	185	283.929215	0	283.929215							
output2	9,099.00	13,964.71	0	13,964.71	DMU9,DMU39,DMU96,DMU104						

	dmu82 - NAZARÉ (eficiência:0.607208)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	303	303	0	303						
input2	57	57	0	57						
input3	981	981	379.562414	601.437586						
output1	154	253.619818	0	253.619818						
output2	5,251.00	8,647.78	2,595.06	11,242.84	DMU9,DMU39,DMU96					

	dmu83 - NOVA OLINDA (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	836	836	0	836							
input2	336	336	0	336							
input3	2,524.00	2,524.00	0	2,524.00							
output1	555	555	0	555							
output2	20,016.00	20,016.00	0	20,016.00	DMU83						

	dmu84 - NOVA ROSALÂNDIA (eficiência:0.516484)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	231	231	0	231						
input2	63	63	38.404255	24.595745						
input3	464	464	82.829787	381.170213						
output1	104	201.361702	0	201.361702						
output2	4,884.00	9,456.26	1,291.17	10,747.43	DMU39,DMU96					

	dmu85 - NOVO ACORDO (eficiência:0.589017)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	244	244	0	244							
input2	63	63	31.420213	31.579787							
input3	622	622	200.066489	421.933511							
output1	125	212.218085	0	212.218085							
output2	3,300.00	5,602.56	5,223.21	10,825.77	DMU39,DMU96						

	dmu86 - NOVO ALEGRE (eficiência:0.370410)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	119	119	0	119						
input2	27	27	17.506083	9.493917						
input3	270	270	13.151752	256.848248						
output1	38	102.58906	0	102.58906						
output2	2,942.00	7,942.55	0	7,942.55	DMU39,DMU73,DMU131					

	dmu87 - NOVO JARDIM (eficiência:0.594225)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	106	106	0	106						
input2	50	50	42.525054	7.474946						
input3	326	326	82.130872	243.869128						
output1	55	92.557522	0	92.557522						
output2	3,236.00	5,445.75	0	5,445.75	DMU39,DMU73,DMU131					

	dmu88 - OLIVEIRA DE FÁTIMA (eficiência:0.837777)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	81	81	0	81						
input2	37	37	30.581207	6.418793						
input3	205	205	0	205						
output1	58	69.230863	0	69.230863						
output2	2,934.00	3,502.13	426.999218	3,929.13	DMU39,DMU110,DMU131					

	dmu89 - PALMEIRANTE (eficiência:0.749066)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	641	641	0	641							
input2	176	176	0	176							
input3	1,613.00	1,613.00	13.886045	1,599.11							
output1	342	456.56857	0	456.56857							
output2	11,252.00	15,021.37	0	15,021.37	DMU9,DMU39,DMU96,DMU104						

	dmu90 - PALMEIRÓPOLIS (eficiência:0.766694)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	479	479	0	479							
input2	187	187	18.011318	168.988682							
input3	1,488.00	1,488.00	278.664527	1,209.34							
output1	310	404.333576	0	404.333576							
output2	12,369.00	16,132.91	0	16,132.91	DMU39,DMU73,DMU96						

	dmu91 - PARAÍSO DO TOCANTINS (eficiência:0.862334)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	434	434	0	434							
input2	146	146	0	146							
input3	1,230.00	1,230.00	145.502249	1,084.50							
output1	311	360.649171	0	360.649171							
output2	16,319.00	18,924.22	0	18,924.22	DMU39,DMU66,DMU73,DMU96						

	dmu92 - PARANÃ (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	1,257.00	1,257.00	0	1,257.00							
input2	184	184	0	184							
input3	3,154.00	3,154.00	0	3,154.00							
output1	550	550	0	550							
output2	17,510.00	17,510.00	0	17,510.00	DMU92						

	dmu93 - PAU D'ARCO (eficiência:0.858804)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	519	519	2.497078	516.502922						
input2	227	227	49.271462	177.728538						
input3	1,277.00	1,277.00	0	1,277.00						
output1	377	438.982777	0	438.982777						
output2	10,993.00	12,800.37	0	12,800.37	DMU39,DMU66,DMU96					

	dmu94 - PEDRO AFONSO (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	278	278	0	278							
input2	78	78	0	78							
input3	604	604	0	604							
output1	143	143	0	143							
output2	47,718.00	47,718.00	0	47,718.00	DMU94						

	dmu95 - PEIXE (eficiência:0.879761)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	635	635	0	635							
input2	163	163	0	163							
input3	1,714.00	1,714.00	142.222143	1,571.78							
output1	360	409.201944	0	409.201944							
output2	33,825.00	38,447.93	0	38,447.93	DMU39,DMU66,DMU96,DMU104						

	dmu96 - PEQUIZEIRO (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	591	591	0	591							
input2	218	218	0	218							
input3	1,510.00	1,510.00	0	1,510.00							
output1	502	502	0	502							
output2	12,917.00	12,917.00	0	12,917.00	DMU96						

	dmu97 - COLMÉIA (eficiência:0.857680)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	705	705	0	705						
input2	219	219	0	219						
input3	1,878.00	1,878.00	105.988076	1,772.01						
output1	442	515.343591	0	515.343591						
output2	13,780.00	16,066.59	5,068.28	21,134.87	DMU83,DMU96,DMU104					

	dmu98 - PINDORAMA DO TOCANTINS (eficiência:0.626315)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	392	392	0	392						
input2	126	126	13.508253	112.491747						
input3	1,241.00	1,241.00	348.646901	892.353099						
output1	210	335.294623	0	335.294623						
output2	7,645.00	12,206.32	0	12,206.32	DMU39,DMU73,DMU96					

	dmu99 - PIRAQUÊ (eficiência:0.821607)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	489	489	0	489						
input2	178	178	6.712235	171.287765						
input3	1,272.00	1,272.00	45.223711	1,226.78						
output1	340	413.82332	0	413.82332						
output2	12,424.00	15,121.59	0	15,121.59	DMU39,DMU73,DMU96					

	dmu100 - PIUM (eficiência:0.866610)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	453	453	0	453							
input2	237	237	98.563346	138.436654							
input3	1,823.00	1,823.00	644.022145	1,178.98							
output1	280	323.097998	0	323.097998							
output2	35,442.00	40,897.28	0	40,897.28	DMU66,DMU73,DMU96						

	dmu101 - PONTE ALTA DO BOM JESUS (eficiência:0.584064)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	551	551	0	551						
input2	115	115	0	115						
input3	1,389.00	1,389.00	75.832567	1,313.17						
output1	214	366.398382	0	366.398382						
output2	4,972.00	8,512.77	4,961.77	13,474.54	DMU9,DMU39,DMU96					

	dmu102 - PONTE ALTA DO TOCANTINS (eficiência:0.701701)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	667	667	0	667						
input2	197	197	0	197						
input3	1,830.00	1,830.00	177.692624	1,652.31						
output1	339	483.111453	0	483.111453						
output2	14,322.00	20,410.39	0	20,410.39	DMU9,DMU39,DMU96,DMU104					

	dmu103 - PORTO ALEGRE DO TOCANTINS (eficiência:0.730720)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	205	205	0	205							
input2	72	72	56.805369	15.194631							
input3	733	733	410.053691	322.946309							
output1	131	179.275168	0	179.275168							
output2	3,463.00	4,739.16	5,390.77	10,129.93	DMU39,DMU131						

	dmu104 - PORTO NACIONAL (eficiência:1.000000)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	1,242.00	1,242.00	0	1,242.00							
input2	218	218	0	218							
input3	2,984.00	2,984.00	0	2,984.00							
output1	577	577	0	577							
output2	60,366.00	60,366.00	0	60,366.00	DMU104						

	dmu105 - PRAIA NORTE (eficiência:0.882930)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	154	154	0	154						
input2	81	81	69.912752	11.087248						
input3	746	746	464.127517	281.872483						
output1	119	134.778523	0	134.778523						
output2	2,708.00	3,067.06	4,405.39	7,472.45	DMU39,DMU131					

	dmu106 - PRESIDENTE KENNEDY (eficiência:0.714402)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	176	176	0	176						
input2	65	65	46.952136	18.047864						
input3	609	609	296.013831	312.986169						
output1	105	146.975979	0	146.975979						
output2	13,096.00	18,331.40	0	18,331.40	DMU39,DMU73,DMU131					

	dmu107 - PUGMIL (eficiência:0.554679)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	141	141	0	141						
input2	45	45	34.334724	10.665276						
input3	308	308	34.983777	273.016223						
output1	68	122.59341	0	122.59341						
output2	4,418.00	7,964.97	0	7,964.97	DMU39,DMU73,DMU131					

	dmu108 - RECURSOLÂNDIA (eficiência:0.475791)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	376	376	0	376						
input2	31	31	0	31						
input3	1,019.00	1,019.00	235.385168	783.614832						
output1	107	224.888533	0	224.888533						
output2	4,743.00	9,968.66	1,515.23	11,483.89	DMU14,DMU39,DMU44					

	dmu109 - RIACHINHO (eficiência:0.865048)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	419	419	0	419						
input2	196	196	70.404255	125.595745						
input3	1,649.00	1,649.00	678.329787	970.670213						
output1	310	358.361702	0	358.361702						
output2	6,371.00	7,364.91	4,515.51	11,880.43	DMU39,DMU96					

	dmu110 - RIO DA CONCEIÇÃO (eficiência:1.000000)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	33	33	0	33						
input2	8	8	0	8						
input3	85	85	0	85						
output1	19	19	0	19						
output2	2,600.00	2,600.00	0	2,600.00	DMU110					

	dmu111 - RIO DOS BOIS (eficiência:0.593814)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	161	161	0	161						
input2	30	30	17.524754	12.475246						
input3	423	423	133.362054	289.637946						
output1	83	139.774408	0	139.774408						
output2	5,570.00	9,380.04	0	9,380.04	DMU39,DMU73,DMU131					

	dmu112 - RIO SONO (eficiência:0.750292)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	860	860	57.343195	802.656805						
input2	388	388	68.059172	319.940828						
input3	2,386.00	2,386.00	0	2,386.00						
output1	411	547.786982	0	547.786982						
output2	7,720.00	10,289.33	8,760.53	19,049.86	DMU83,DMU96					

	dmu113 - SAMPAIO (eficiência:0.913136)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	115	115	0	115						
input2	21	21	13.053691	7.946309						
input3	395	395	144.536913	250.463087						
output1	92	100.751678	0	100.751678						
output2	1,781.00	1,950.42	3,489.84	5,440.26	DMU39,DMU131					

	dmu114 - SANDOLÂNDIA (eficiência:0.689622)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	557	557	0	557							
input2	242	242	50.955574	191.044426							
input3	1,549.00	1,549.00	118.518196	1,430.48							
output1	305	442.271036	0	442.271036							
output2	17,819.00	25,838.78	0	25,838.78	DMU66,DMU73,DMU96						

	dmu115 - SANTA FÉ DO ARAGUAIA (eficiência:0.739056)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	243	243	53.918748	189.081252						
input2	28	28	0	28						
input3	652	652	230.65215	421.34785						
output1	95	128.542394	0	128.542394						
output2	24,184.00	32,722.83	0	32,722.83	DMU39,DMU66,DMU73					

	dmu116 - SANTA MARIA DO TOCANTINS (eficiência:0.519466)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	265	265	0	265						
input2	130	130	69.732671	60.267329						
input3	735	735	168.406206	566.593794						
output1	116	223.306319	0	223.306319						
output2	8,842.00	17,021.33	0	17,021.33	DMU39,DMU73,DMU96					

	dmu117 - SANTA RITA DO TOCANTINS (eficiência:0.352490)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	311	311	0	311						
input2	55	55	0	55						
input3	748	748	8.349288	739.650712						
output1	66	187.239214	0	187.239214						
output2	16,519.00	46,863.71	0	46,863.71	DMU39,DMU66,DMU73,DMU96					

	dmu118 - SANTA ROSA DO TOCANTINS (eficiência:0.678745)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	459	459	0	459							
input2	99	99	0	99							
input3	1,034.00	1,034.00	15.354888	1,018.65							
output1	222	327.074264	0	327.074264							
output2	12,401.00	18,270.49	0	18,270.49	DMU39,DMU66,DMU96,DMU104						

	dmu119 - SANTA TEREZA DO TOCANTINS (eficiência:0.844967)									
Variável	Atual	Radial	Folga	Alvo	Benchmark					
input1	184	184	0	184						
input2	110	110	96.496644	13.503356						
input3	522	522	215.966443	306.033557						
output1	136	160.95302	0	160.95302						
output2	3,513.00	4,157.56	4,878.11	9,035.67	DMU39,DMU131					

	dmu120 - SANTA TEREZINHA DO TOCANTINS (eficiência:0.904126)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	177	177	0	177							
input2	74	74	61.060403	12.939597							
input3	660	660	359.604027	300.395973							
output1	140	154.845638	0	154.845638							
output2	3,510.00	3,882.20	4,788.72	8,670.92	DMU39,DMU131						

	dmu121 - SÃO BENTO DO TOCANTINS (eficiência:0.615211)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	385	385	0	385							
input2	222	222	114.670213	107.329787							
input3	1,276.00	1,276.00	411.941489	864.058511							
output1	203	329.968085	0	329.968085							
output2	4,012.00	6,521.34	5,154.18	11,675.52	DMU39,DMU96						

	dmu122 - SÃO FÉLIX DO TOCANTINS (eficiência:0.589537)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	157	157	0	157							
input2	31	31	19.671141	11.328859							
input3	324	324	39.711409	284.288591							
output1	81	137.395973	0	137.395973							
output2	1,013.00	1,718.30	5,910.47	7,628.77	DMU39,DMU131						

	dmu123 - SÃO MIGUEL DO TOCANTINS (eficiência:0.811833)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	200	200	0	200							
input2	100	100	85.208054	14.791946							
input3	863	863	544.080537	318.919463							
output1	142	174.912752	0	174.912752							
output2	4,219.00	5,196.88	4,672.51	9,869.39	DMU39,DMU131						

	dmu124 - SÃO SALVADOR DO TOCANTINS (eficiência:0.628310)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	291	291	0	291							
input2	177	177	120.170213	56.829787							
input3	929	929	359.691489	569.308511							
output1	158	251.468085	0	251.468085							
output2	4,523.00	7,198.67	3,910.35	11,109.02	DMU39,DMU96						

	dmu125 - SÃO SEBASTIÃO DO TOCANTINS (eficiência:0.664100)										
Variável	Atual	Benchmark									
input1	291	291	0	291							
input2	127	127	70.170213	56.829787							
input3	865	865	295.691489	569.308511							
output1	167	251.468085	0	251.468085							
output2	1,945.00	2,928.78	8,180.25	11,109.02	DMU39,DMU96						

	dmu126 - SÃO VALÉRIO (eficiência:0.795572)										
Variável	Atual	Radial	Benchmark								
input1	430	430	0	430							
input2	95	95	0	95							
input3	1,029.00	1,029.00	81.73327	947.26673							
output1	253	318.01003	0	318.01003							
output2	13,435.00	16,887.21	0	16,887.21	DMU39,DMU66,DMU96,DMU104						

	dmu127 - SILVANÓPOLIS (eficiência:0.906468)										
Variável	Atual	Radial	Benchmark								
input1	382	382	0	382							
input2	81	81	0	81							
input3	1,192.00	1,192.00	373.198361	818.801639							
output1	265	292.343384	0	292.343384							
output2	14,515.00	16,012.70	0	16,012.70	DMU39,DMU66,DMU96,DMU104						

	dmu128 - SÍTIO NOVO DO TOCANTINS (eficiência:0.885064)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	320	320	0	320							
input2	141	141	68.590426	72.409574							
input3	1,034.00	1,034.00	373.757979	660.242021							
output1	244	275.68617	0	275.68617							
output2	5,352.00	6,047.02	5,236.77	11,283.79	DMU39,DMU96						

	dmu129 - SUCUPIRA (eficiência:0.591894)										
Variável	Atual	Radial	Folga	Alvo	Benchmark						
input1	180	180	0	180							
input2	52	52	32.114257	19.885743							
input3	475	475	151.012889	323.987111							
output1	89	150.364746	0	150.364746							
output2	10,862.00	18,351.26	0	18,351.26	DMU39,DMU73,DMU96						

	dmu130 - TAGUATINGA (eficiência:0.851965)										
Variável	Atual	Radial	Benchmark								
input1	1,023.00	1,023.00	0	1,023.00							
input2	174	174	0	174							
input3	2,643.00	2,643.00	77.984283	2,565.02							
output1	433	508.236703	0	508.236703							
output2	17,895.00	21,004.38	0	21,004.38	DMU9,DMU92,DMU96,DMU104						

	dmu131 - TAIPAS DO TOCANTINS (eficiência:1.000000)										
Variável	Variável Atual Radial Folga Alvo Benchmark										
input1	66	66	0	66							
input2	4	4	0	4							
input3	211	211	0	211							
output1	58	58	0	58							
output2	2,887.00	2,887.00	0	2,887.00	DMU131						

	dmu132 - TALISMÃ (eficiência:0.481709)										
Variável	Atual	Radial	Benchmark								
input1	341	341	0	341							
input2	106	106	0	106							
input3	945	945	68.934853	876.065147							
output1	125	259.492507	0	259.492507							
output2	14,979.00	31,095.51	0	31,095.51	DMU39,DMU66,DMU73,DMU96						

	dmu133 - 1	PALMAS (efic			
Variável	Atual	Radial	Folga	Alvo	Benchmark
input1	962	962	0	962	
input2	202	202	0	202	
input3	2,605.00	2,605.00	191.039768	2,413.96	
output1	494	531.217786	0	531.217786	
output2	17,950.00	19,302.35	0	19,302.35	DMU9,DMU92,DMU96,DMU104

	dmu134 - TOCANTÍNIA (eficiência:0.754411)					
Variável	Atual	Radial	Folga	Alvo	Benchmark	
input1	274	274	0	274		
input2	78	78	30.303191	47.696809		
input3	1,550.00	1,550.00	1,034.00	516.00266		
output1	179	237.271277	0	237.271277		
output2	2,734.00	3,624.02	7,382.55	11,006.57	DMU39,DMU96	

dmı	u135 - TOCA	NTINÓPOLIS			
Variável	Atual	Radial	Folga	Alvo	Benchmark
input1	460	460	0	460	
input2	49	49	0	49	
input3	1,117.00	1,117.00	135.108262	981.891738	
output1	165	261.924236	0	261.924236	
output2	6,540.00	10,381.72	1,592.52	11,974.24	DMU14,DMU39,DMU44

dmu136 - TUPIRAMA (eficiência:0.896734)					
Variável	Atual	Radial	Folga	Alvo	Benchmark
input1	151	151	17.806701	133.193299	
input2	27	27	12.44609	14.55391	
input3	240	240	0	240	
output1	98	109.285513	0	109.285513	
output2	11,104.00	12,382.72	0	12,382.72	DMU39,DMU73,DMU110

dmu137 - TUPIRATINS (eficiência:0.516833)					
Variável	Atual	Radial	Folga	Alvo	Benchmark
input1	365	365	156.316258	208.683742	
input2	14	14	0	14	
input3	980	980	604.36349	375.63651	
output1	85	164.463108	0	164.463108	
output2	5,507.00	10,655.27	0	10,655.27	DMU39,DMU67,DMU73

dmu138 - WANDERLÂNDIA (eficiência:0.831044)						
Variável	Atual	Radial	Folga	Alvo	Benchmark	
input1	676	676	0	676		
input2	251	251	0	251		
input3	1,905.00	1,905.00	115.32711	1,789.67		
output1	426	512.608286	0	512.608286		
output2	17,137.00	20,621.05	0	20,621.05	DMU53,DMU83,DMU96,DMU104	

	dmu139 - XAMBIOÁ (eficiência:0.753959)					
Variável	Atual	Radial	Folga	Alvo	Benchmark	
input1	415	415	0	415		
input2	115	115	0	115		
input3	1,308.00	1,308.00	293.68307	1,014.32		
output1	233	309.035207	0	309.035207		
output2	24,033.00	31,875.72	0	31,875.72	DMU39,DMU66,DMU73,DMU96	

Fonte: Elaboração do autor

ANEXO A - Participação das atividades econômicas no Valor Adicionado Bruto a preços básicos, por Unidade da Federação, 2010.

básicos, por Unidade da Fede ESTADO	ATIVIDADE ECONÔMICA	PARTICIPAÇÃO NO VALOR ADICIONADO BRUTO A PREÇOS BÁSICOS (%)
	Agropecuária	21.5
RONDÔNIA	Indústria	14.6
KONDONIA	Serviços	63.9
	TOTAL	100.0
	Agropecuária	18.9
ACRE	Indústria	14.3
ACRE	Serviços	66.8
	TOTAL	100.0
	Agropecuária	6.2
AMAZONAS	Indústria	43.9
AMAZONAS	Serviços	49.9
	TOTAL	100.0
	Agropecuária	4.7
DODATMA	Indústria	13.1
RORAIMA	Serviços	82.2
	TOTAL	100.0
	Agropecuária	6.6
PARÁ	Indústria	41.4
PAKA	Serviços	52.0
	TOTAL	100.0
	Agropecuária	3.2
AMAPÁ	Indústria	10.0
AMAPA	Serviços	86.8
	TOTAL	100.0
	Agropecuária	18.1
TOCANTINS	Indústria	25.4
TOCANTINS	Serviços	56.5
	TOTAL	100.0
	Agropecuária	17.2
MARANHÃO	Indústria	15.7
MARANHAU	Serviços	67.1
	TOTAL	100.0
	Agropecuária	6.2
DIATŤ	Indústria	18.5
PIAUÍ	Serviços	75.3
	TOTAL	100.0

continua...

ESTADO	ATIVIDADE ECONÔMICA	PARTICIPAÇÃO NO VALOR ADICIONADO BRUTO A PREÇOS BÁSICOS (%)
	Agropecuária	4.2
CEARÁ	Indústria	23.7
CEARA	Serviços	72.1
	TOTAL	100.0
	Agropecuária	4.2
RIO GRANDE DO NORTE	Indústria	21.5
RIO GRANDE DO NORTE	Serviços	74.3
	TOTAL	100.0
	Agropecuária	4.2
PARAÍBA	Indústria	22.5
PARAIDA	Serviços	73.3
	TOTAL	100.0
	Agropecuária	4.5
PERNAMBUCO	Indústria	22.1
FERNAMBUCO	Serviços	73.4
	TOTAL	100.0
	Agropecuária	6.7
ALAGOAS	Indústria	21.2
ALAGOAS	Serviços	72.1
	TOTAL	100.0
	Agropecuária	4.6
SERGIPE	Indústria	28.5
SERGIFE	Serviços	66.9
	TOTAL	100.0
	Agropecuária	7.2
BAHIA	Indústria	30.3
ВАПІА	Serviços	62.5
	TOTAL	100.0
	Agropecuária	8.5
MINAS GERAIS	Indústria	33.6
WIINAS GERAIS	Serviços	57.9
	TOTAL	100.0
	Agropecuária	6.3
ESPÍRITO SANTO	Indústria	36.0
ESTINITO SANTO	Serviços	57.7
	TOTAL	100.0
	Agropecuária	0.4
RIO DE JANEIRO	Indústria	28.1
RIO DE JANEIRO	Serviços	71.5
	TOTAL	100.0

continua...

ESTADO	ATIVIDADE ECONÔMICA	PARTICIPAÇÃO NO VALOR ADICIONADO BRUTO A PREÇOS BÁSICOS (%)
	Agropecuária	1.9
SÃO PAULO	Indústria	29.1
SAO FAULO	Serviços	69.0
	TOTAL	100.0
	Agropecuária	8.5
PARANÁ	Indústria	27.4
IAKANA	Serviços	64.1
	TOTAL	100.0
	Agropecuária	6.7
SANTA CATARINA	Indústria	34.1
SANTA CATARINA	Serviços	59.2
	TOTAL	100.0
	Agropecuária	8.7
RIO GRANDE DO SUL	Indústria	29.2
RIO GRANDE DO SUL	Serviços	62.1
	TOTAL	100.0
	Agropecuária	15.5
MATO GROSSO DO SUL	Indústria	22.1
MATO GROSSO DO SUL	Serviços	62.4
	TOTAL	100.0
	Agropecuária	22.1
MATO CDOSSO	Indústria	20.6
MATO GROSSO	Serviços	57.3
	TOTAL	100.0
	Agropecuária	14.1
GOIÁS	Indústria	26.6
GOIAS	Serviços	59.3
	TOTAL	100.0
	Agropecuária	0.3
	Indústria	6.5
DISTRITO FEDERAL	Serviços	93.2
	TOTAL	100.0
	Agropecuária	5.3
DD A CIT	Indústria	28.1
BRASIL	Serviços	66.6
	TOTAL	100.0

Fonte: IBGE, Contas Regionais do Brasil, 2010.

ANEXO B - Número de estabelecimentos agropecuários por grupos de área total – (1995-96/2006)

ANEXO D - Nu						ERO DE ES						S (UNIDA)	DES)						
BRASIL E		ТОТА	L			DE 10 HA				DE 100 H				S DE 100	0 HA	10	000 HA	E MAIS	
UNIDADES DA FEDERAÇÃO	1995	2006	CRESCIMENTO %	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%
Brasil	4,859,865	5,175,636	6.5	2,402,374	49.4	2,477,151	47.9	1,916,487	39.4	1,971,600	38.1	469,964	9.7	424,288	8.2	49,358	1.0	47,578	0.9
Rondônia	76,956	87,078	13.2	17,618	22.9	16,220	18.6	43,581	56.6	53,666	61.6	14,874	19.3	15,169	17.4	881	1.1	1,109	1.3
Acre	23,788	29,483	23.9	3,962	16.7	5,275	17.9	13,647	57.4	14,384	48.8	5,860	24.6	7,562	25.6	319	1.3	387	1.3
Amazonas	83,289	66,784	-19.8	43,793	52.6	27,043	40.5	34,066	40.9	23,145	34.7	4,910	5.9	5,641	8.4	253	0.3	506	0.8
Roraima	7,476	10,310	37.9	1,025	13.7	640	6.2	2,990	40.0	6,523	63.3	2,810	37.6	2,402	23.3	570	7.6	300	2.9
Pará	206,404	222,029	7.6	64,838	31.4	69,928	31.5	104,435	50.6	99,378	44.8	34,476	16.7	33,483	15.1	2,450	1.2	3,147	1.4
Amapá	3,349	3,527	5.3	953	28.5	554	15.7	1,095	32.7	1,520	43.1	1,152	34.4	879	24.9	75	2.2	135	3.8
Tocantins	44,913	56,567	25.9	2,614	5.8	6,872	12.1	17,283	38.5	30,489	53.9	19,565	43.6	15,382	27.2	3,475	7.7	2,883	5.1
Maranhão	368,191	287,039	-22.0	272,100	73.9	136,014	47.4	59,360	16.1	68,035	23.7	20,796	5.6	22,290	7.8	1,681	0.5	1,716	0.6
Piauí	208,111	245,378	17.9	134,948	64.8	134,272	54.7	55,192	26.5	71,270	29.0	15,683	7.5	14,723	6.0	1,174	0.6	1,035	0.4
Ceará	339,602	381,017	12.2	245,312	72.2	257,461	67.6	76,199	22.4	68,511	18.0	16,871	5.0	14,825	3.9	835	0.2	685	0.2
Rio Grande do Norte	91,376	83,053	-9.1	57,958	63.4	43,666	52.6	26,355	28.8	29,491	35.5	6,171	6.8	5,113	6.2	492	0.5	404	0.5
Paraíba	146,539	167,286	14.2	101,435	69.2	110,923	66.3	36,840	25.1	41,874	25.0	7,760	5.3	6,925	4.1	420	0.3	330	0.2
Pernambuco	258,630	304,790	17.8	186,669	72.2	208,112	68.3	61,672	23.8	68,305	22.4	9,703	3.8	8,312	2.7	439	0.2	316	0.1
Alagoas	115,064	123,332	7.2	92,736	80.6	95,791	77.7	18,625	16.2	18,774	15.2	3,487	3.0	3,027	2.5	190	0.2	200	0.2
Sergipe	99,774	100,607	0.8	77,618	77.8	75,760	75.3	18,266	18.3	20,055	19.9	3,061	3.1	2,464	2.4	113	0.1	82	0.1
Bahia	699,126	761,558	8.9	401,734	57.5	436,396	57.3	251,752	36.0	264,550	34.7	41,874	6.0	37,805	5.0	3,563	0.5	3,444	0.5
Minas Gerais	496,677	551,621	11.1	169,638	34.2	235,701	42.7	246,286	49.6	239,697	43.5	75,805	15.3	57,840	10.5	4,529	0.9	3,548	0.6
Espírito Santo	73,288	84,361	15.1	23,492	32.1	40,253	47.7	43,412	59.2	39,054	46.3	6,102	8.3	4,299	5.1	202	0.3	157	0.2
Rio de Janeiro	53,680	58,493	9.0	28,439	53.0	33,180	56.7	20,005	37.3	19,120	32.7	5,011	9.3	4,123	7.0	200	0.4	158	0.3
São Paulo	218,016	227,622	4.4	65,303	30.0	84,325	37.0	119,209	54.7	113,567	49.9	31,162	14.3	25,465	11.2	2,086	1.0	2,093	0.9
Paraná	369,875	371,063	0.3	154,620	41.8	165,522	44.6	188,305	50.9	170,405	45.9	25,432	6.9	25,095	6.8	1,450	0.4	1,209	0.3
Santa Catarina	203,347	193,668	-4.8	72,462	35.6	69,394	35.8	122,036	60.0	112,445	58.1	8,231	4.0	7,252	3.7	508	0.2	455	0.2

					NÚME	CRO DE ES	TABEL	ECIMENT	OS AG	ROPECUÁ	RIOS	(UNIDAI	DES)						
BRASIL E		TOTA	L	M	ENOS I	DE 10 HA		10 A N	MENOS	DE 100 H	4	100 A N	MENO	S DE 1000) HA	10	000 HA	E MAIS	
UNIDADES DA FEDERAÇÃO	1995	2006	CRESCIMENTO %	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%
Rio Grande do Sul	429,958	441,472	2.7	150,679	35.0	171,582	38.9	244,905	57.0	232,610	52.7	30,727	7.1	27,580	6.2	3,072	0.7	2,843	0.6
Mato Grosso do Sul	49,423	64,864	31.2	9,170	18.6	13,398	20.7	17,753	35.9	29,277	45.1	15,423	31.2	15,228	23.5	6,902	14.0	6,661	10.3
Mato Grosso	78,762	112,987	43.5	9,801	12.4	14,989	13.3	37,076	47.1	61,781	54.7	23,861	30.3	26,457	23.4	8,010	10.2	8,744	7.7
Goiás	111,791	135,692	21.4	12,526	11.2	21,842	16.1	55,073	49.3	72,242	53.2	38,728	34.6	34,494	25.4	5,437	4.9	5,001	3.7
Distrito Federal	2,459	3,955	60.8	930	37.8	2,038	51.5	1,069	43.5	1,432	36.2	429	17.4	453	11.5	31	1.3	30	0.8

Fonte: Censo Agropecuário, 1995/96 e 2006

ANEXO C - Área dos estabelecimentos agropecuários por grupos de área total - (1995-96/2006)

			ocicemientos a	- <u>61</u>				BELECIMEN					ES)						
BRASIL E		TOTAL		ME	ENOS	DE 10 HA		10 A M	ENOS	DE 100 HA		100 A N	MENO	S DE 1000 HA		10	000 HA	E MAIS	
UNIDADES DA FEDERAÇÃO	1995	2006	CRESCIMENTO %	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%
Brasil	353,611,246	333,680,037	-5.6	7,882,194	2.2	7,798,777	2.3	62,693,585	17.7	62,893,979	18.8	123,541,517	34.9	112,844,186	33.8	159,493,949	45.1	150,143,096	45.0
Rondônia	8,890,440	8,433,868	-5.1	86,085	1.0	80,227	1.0	1,821,932	20.5	2,154,939	25.6	2,774,041	31.2	3,285,166	39.0	4,208,382	47.3	2,913,535	34.5
Acre	3,183,065	3,528,543	10.9	14,293	0.4	16,667	0.5	659,266	20.7	653,596	18.5	1,247,891	39.2	1,671,318	47.4	1,261,615	39.6	1,186,961	33.6
Amazonas	3,322,566	3,668,753	10.4	157,719	4.7	49,131	1.3	985,933	29.7	845,352	23.0	976,291	29.4	1,200,728	32.7	1,202,623	36.2	1,573,542	42.9
Roraima	2,976,817	1,717,532	-42.3	2,180	0.1	1,322	0.1	176,412	5.9	385,878	22.5	604,433	20.3	538,573	31.4	2,193,792	73.7	791,759	46.1
Pará	22,520,229	22,925,331	1.8	210,417	0.9	177,975	0.8	4,117,745	18.3	3,952,168	17.2	6,735,076	29.9	7,326,914	32.0	11,456,992	50.9	11,468,274	50.0
Amapá	700,047	873,789	24.8	3,027	0.4	1,185	0.1	43,572	6.2	66,269	7.6	235,815	33.7	179,491	20.5	417,633	59.7	626,844	71.7
Tocantins	16,765,716	14,387,949	-14.2	11,597	0.1	35,222	0.2	895,718	5.3	1,280,518	8.9	6,286,301	37.5	4,814,156	33.5	9,572,100	57.1	8,258,053	57.4
Maranhão	12,560,692	13,033,568	3.8	389,795	3.1	178,368	1.4	2,404,123	19.1	2,615,239	20.1	5,201,157	41.4	5,519,381	42.3	4,565,617	36.3	4,720,580	36.2
Piauí	9,659,972	9,506,597	-1.6	290,716	3.0	299,457	3.1	2,008,305	20.8	2,414,065	25.4	3,768,890	39.0	3,455,727	36.4	3,592,061	37.2	3,337,349	35.1
Ceará	8,963,842	7,948,067	-11.3	633,509	7.1	533,764	6.7	2,482,144	27.7	2,265,459	28.5	4,121,434	46.0	3,661,629	46.1	1,726,755	19.3	1,487,215	18.7
Rio Grande do Norte	3,733,521	3,187,928	-14.6	155,526	4.2	128,892	4.0	851,455	22.8	856,843	26.9	1,670,287	44.7	1,411,913	44.3	1,056,254	28.3	790,280	24.8
Paraíba	4,109,347	3,787,404	-7.8	293,012	7.1	317,043	8.4	1,096,442	26.7	1,174,783	31.0	1,957,724	47.6	1,703,970	45.0	762,167	18.5	591,608	15.6
Pernambuco	5,580,734	5,434,076	-2.6	529,764	9.5	550,663	10.1	1,795,139	32.2	1,882,520	34.6	2,389,196	42.8	1,923,664	35.4	866,635	15.5	1,077,229	19.8
Alagoas	2,142,460	2,112,574	-1.4	220,023	10.3	226,341	10.7	545,369	25.5	526,562	24.9	963,371	45.0	789,183	37.4	413,698	19.3	570,488	27.0
Sergipe	1,702,628	1,482,437	-12.9	174,398	10.2	181,314	12.2	558,054	32.8	564,231	38.1	772,779	45.4	584,256	39.4	197,397	11.6	152,637	10.3
Bahia	29,842,900	29,581,760	-0.9	1,373,887	4.6	1,369,894	4.6	7,534,252	25.2	7,802,787	26.4	10,627,611	35.6	9,628,430	32.5	10,307,151	34.5	10,780,650	36.4
Minas Gerais	40,811,660	33,083,509	-18.9	750,810	1.8	899,193	2.7	8,848,486	21.7	8,052,728	24.3	19,546,848	47.9	14,816,585	44.8	11,665,516	28.6	9,315,003	28.2
Espírito Santo	3,488,725	2,839,854	-18.6	120,192	3.4	183,095	6.4	1,415,638	40.6	1,142,914	40.2	1,413,808	40.5	1,004,420	35.4	539,086	15.5	509,425	17.9
Rio de Janeiro	2,416,305	2,059,462	-14.8	98,055	4.1	112,794	5.5	681,970	28.2	624,161	30.3	1,261,973	52.2	1,032,907	50.2	374,306	15.5	289,599	14.1
São Paulo	17,369,204	16,954,949	-2.4	307,645	1.8	373,908	2.2	4,116,864	23.7	3,631,180	21.4	8,188,570	47.1	6,775,948	40.0	4,756,125	27.4	6,173,912	36.4
Paraná	15,946,632	15,391,782	-3.5	792,119	5.0	725,579	4.7	5,405,907	33.9	4,791,850	31.1	6,550,666	41.1	6,823,868	44.3	3,197,940	20.1	3,050,485	19.8
Santa Catarina	6,612,846	6,062,506	-8.3	364,673	5.5	334,180	5.5	3,130,948	47.3	2,842,357	46.9	2,074,321	31.4	1,783,559	29.4	1,042,904	15.8	1,102,410	18.2

						ÁREA DOS	ESTA	ABELECIMEN	TOS .	AGROPECU	J ÁRI C	OS (HECTARI	ES)						
BRASIL E		TOTAL		ME	ENOS	DE 10 HA		10 A M	ENOS	DE 100 HA		100 A I	MENOS	S DE 1000 HA		10	000 HA	E MAIS	
UNIDADES DA FEDERAÇÃO	1995	2006	CRESCIMENTO %	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%	1995	%	2006	%
Rio Grande do Sul	21,800,887	20,326,715	-6.8	743,402	3.4	779,381	3.8	6,428,393	29.5	6,022,914	29.6	8,815,092	40.4	7,987,275	39.3	5,814,000	26.7	5,537,145	27.2
Mato Grosso do Sul	30,942,772	30,274,975	-2.2	39,681	0.1	64,818	0.2	637,163	2.1	873,699	2.9	5,992,676	19.4	5,991,350	19.8	24,273,252	78.4	23,345,109	77.1
Mato Grosso	49,839,631	48,688,711	-2.3	46,163	0.1	58,610	0.1	1,588,678	3.2	2,582,558	5.3	7,237,076	14.5	8,102,689	16.6	40,967,713	82.2	37,944,854	77.9
Goiás	27,472,648	26,136,081	-4.9	69,284	0.3	111,376	0.4	2,425,310	8.8	2,840,656	10.9	12,011,556	43.7	10,701,273	40.9	12,966,497	47.2	12,482,776	47.8
Distrito Federal	244,930	251,320	2.6	4,222	1.7	8,379	3.3	38,367	15.7	47,753	19.0	116,633	47.6	129,814	51.7	85,708	35.0	65,374	26.0

Fonte: Censo Agropecuário, 1995/96 e 2006

ANEXO D - Estabelecimentos e área da agricultura familiar, segundo as Grandes Regiões e Unidades da Federação - 2006

GRANDES REGIÕES	AGRICULTURA FA	MILIAR	- LEI Nº 11.3	26	NÃO	FAMILIA	AR.		TOTAL	
E UNIDADES DA FEDERAÇÃO	ESTABELECIMENTOS	%	ÁREA (HA)	%	ESTABELECIMENTOS	%	ÁREA (HA)	%	ESTABELECIMENTOS	ÁREA (HA)
Brasil	4,366,267	84.4%	80,102,694	24.0%	809,369	15.6%	253,577,343	76.0%	5,175,636	333,680,037
Norte	412,666	86.7%	16,611,277	29.9%	63,112	13.3%	38,924,487	70.1%	475,778	55,535,764
Rondônia	75,165	86.3%	3,292,577	39.0%	11,913	13.7%	5,141,291	61.0%	87,078	8,433,868
Acre	25,114	85.2%	1,508,357	42.7%	4,369	14.8%	2,020,186	57.3%	29,483	3,528,543
Amazonas	61,830	92.6%	1,475,558	40.2%	4,954	7.4%	2,193,195	59.8%	66,784	3,668,753
Roraima	8,898	86.3%	637,898	37.1%	1,412	13.7%	1,079,634	62.9%	10,310	1,717,532
Pará	195,985	88.3%	6,877,384	30.0%	26,044	11.7%	16,047,946	70.0%	222,029	22,925,331
Amapá	2,865	81.2%	131,205	15.0%	662	18.8%	742,584	85.0%	3,527	873,789
Tocantins	42,809	75.7%	2,688,297	18.7%	13,758	24.3%	11,699,652	81.3%	56,567	14,387,949
Nordeste	2,187,131	89.1%	28,315,052	37.2%	266,929	10.9%	47,759,359	62.8%	2,454,060	76,074,411
Maranhão	262,042	91.3%	4,514,639	34.6%	24,997	8.7%	8,518,929	65.4%	287,039	13,033,568
Piauí	220,735	90.0%	3,759,492	39.5%	24,643	10.0%	5,747,106	60.5%	245,378	9,506,597
Ceará	341,509	89.6%	3,492,419	43.9%	39,508	10.4%	4,455,648	56.1%	381,017	7,948,067
Rio Grande do Norte	71,210	85.7%	1,046,070	32.8%	11,843	14.3%	2,141,858	67.2%	83,053	3,187,928
Paraíba	148,069	88.5%	1,596,656	42.2%	19,217	11.5%	2,190,749	57.8%	167,286	3,787,404
Pernambuco	275,720	90.5%	2,566,324	47.2%	29,070	9.5%	2,867,752	52.8%	304,790	5,434,076
Alagoas	111,750	90.6%	682,405	32.3%	11,582	9.4%	1,430,169	67.7%	123,332	2,112,574
Sergipe	90,329	89.8%	710,891	48.0%	10,278	10.2%	771,546	52.0%	100,607	1,482,437
Bahia	665,767	87.4%	9,946,156	33.6%	95,791	12.6%	19,635,604	66.4%	761,558	29,581,760
Sudeste	699,755	75.9%	12,771,299	23.2%	222,342	24.1%	42,166,474	76.8%	922,097	54,937,773
Minas Gerais	437,320	79.3%	8,835,622	26.7%	114,301	20.7%	24,247,887	73.3%	551,621	33,083,509
Espírito Santo	67,414	79.9%	966,613	34.0%	16,947	20.1%	1,873,241	66.0%	84,361	2,839,854
Rio de Janeiro	44,121	75.4%	468,797	22.8%	14,372	24.6%	1,590,665	77.2%	58,493	2,059,462
São Paulo	150,900	66.3%	2,500,267	14.7%	76,722	33.7%	14,454,682	85.3%	227,622	16,954,949
Sul	849,693	84.4%	13,054,511	31.2%	156,510	15.6%	28,726,492	68.8%	1,006,203	41,781,003
Paraná	302,828	81.6%	4,252,659	27.6%	68,235	18.4%	11,139,123	72.4%	371,063	15,391,782
Santa Catarina	168,512	87.0%	2,643,241	43.6%	25,156	13.0%	3,419,265	56.4%	193,668	6,062,506

GRANDES REGIÕES E	AGRICULTURA FA	MILIAF	R - LEI Nº 11.3	26	NÃO	O FAMILI	AR		TOTAL	
UNIDADES DA FEDERAÇÃO	ESTABELECIMENTO S	%	ÁREA (HA)	%	ESTABELECIMENTO S	%	ÁREA (HA)	%	ESTABELECIMENT OS	ÁREA (HA)
Rio Grande do Sul	378,353	85.7%	6,158,610	30.3%	63,119	14.3%	14,168,104	69.7%	441,472	20,326,715
Centro-Oeste	217,022	68.4%	9,350,556	8.9%	100,476	31.6%	96,000,530	91.1%	317,498	105,351,087
Mato Grosso do Sul	41,057	63.3%	1,184,217	3.9%	23,807	36.7%	29,090,759	96.1%	64,864	30,274,975
Mato Grosso	85,815	76.0%	4,837,564	9.9%	27,172	24.0%	43,851,146	90.1%	112,987	48,688,711
Goiás	88,326	65.1%	3,317,908	12.7%	47,366	34.9%	22,818,173	87.3%	135,692	26,136,081
Distrito Federal	1,824	46.1%	10,867	4.3%	2,131	53.9%	240,453	95.7%	3,955	251,320

Fonte: IBGE, Censo Agropecuário 2006.

ANEXO E - Características dos estabelecimentos da agropecuária nos municípios do Estado do Tocantins - 2006

		INPUT1	INPUT2	INPUT3	INPUT4	INPUT5	INPUT6	INPUT7	INPUT8	INPUT9	OUTPUT1	OUTPUT2	OUTPUT3
DMU's	MUNICÍPIOS	NÚMERO DE ESTABEL. AGROPEC. (UNIDADES)	ÁREA DOS ESTABEL. AGROPEC. (HECTARES)	NÚMERO DE ESTABEL. DA AGRICULTURA FAMILIAR	NÚMERO DE ESTABEL. COM ORIENTAÇÃO TÉCNICA ¹	NÚMERO DE ESTABEL. AGROPEC. QUE INVESTIRAM (UNIDADES)	VALOR DOS INVESTIMENTOS (MIL REAIS)	VALOR DAS DESPESAS (MIL REAIS)	NÚMERO DE TRATORES NOS ESTABEL. AGROPEC. (UNIDADES)	PESSOAL OCUPADO ²	NÚMERO DE ESTABEL. AGROPEC. QUE OBTIVERA M RECEITAS NO ANO (UNIDADES)	VALOR DAS RECEITAS OBTIDAS PELOS ESTABEL. NO ANO (MIL REAIS)	PIB AGROPECUÁRIO (Mil reais) ³
dmu1	Abreulândia	243	113548	154	34	67	1300	2841	66	564	108	1649	5540
dmu2	Aguiarnópolis	224	23012	170	174	99	1005	1592	20	712	153	13104	8241
dmu3	Aliança do Tocantins	293	135551	180	142	138	2303	6288	108	694	223	3195	11091
dmu4	Almas	368	150626	248	117	58	1611	24578	82	1049	164	17627	8021
dmu5	Alvorada	208	88250	111	136	37	1125	9798	189	509	89	4494	17149
dmu6	Ananás	262	142789	186	75	91	7447	15720	76	845	137	969	13451
dmu7	Angico	280	13719	243	49	103	1873	2169	27	1075	163	3560	4707
dmu8	Aparecida do Rio Negro	285	92985	194	57	112	1374	7010	64	980	158	16007	10749
dmu9	Aragominas	899	66088	777	381	152	1312	5125	44	2273	469	2219	17041
dmu10	Araguacema	481	149466	379	242	118	4124	5539	115	1347	249	2471	10179
dmu11	Araguaçu	806	215012	535	283	158	5633	16400	352	1738	253	2027	40468
dmu12	Araguaína	1004	225665	800	160	174	3997	24966	240	3056	482	5812	48938
dmu13	Araguanã	137	47699	81	123	24	1388	11768	45	493	107	783	10770
dmu14	Araguatins	1306	86290	1211	459	180	1661	4618	55	3166	547	3882	16637
dmu15	Arapoema	307	133506	191	89	136	5154	13080	81	1177	200	2460	19544
dmu16	Arraias	924	228359	710	70	152	13650	16109	114	3348	434	18095	34032
dmu17	Augustinópolis	425	22073	371	138	154	899	3511	35	1242	346	3023	8225
dmu18	Aurora do Tocantins	282	49939	241	12	63	1269	3183	39	624	175	991	8388
dmu19	Axixá do Tocantins	306	14795	268	53	135	1475	2456	8	866	209	1372	5881
dmu20	Babaçulândia	943	41568	815	120	210	3573	2744	68	2424	481	3578	11614
dmu21	Bandeirantes do Tocantins	190	359979	72	56	29	2340	14918	76	559	120	821	20376
dmu22	Barra do Ouro	217	75421	173	18	63	629	1726	24	609	108	2900	7950
dmu23	Barrolândia	210	51025	129	90	72	1069	3489	56	536	163	3253	13023
dmu24	Bernardo Sayão	689	101225	629	129	225	2746	5740	57	1707	451	3217	19651
dmu25	Bom Jesus do Tocantins	135	29198	110	30	27	768	552	8	454	33	176	9816

dmu26	Brasilândia do Tocantins	148	54661	110	12	28	833	5661	50	472	71	2761	11631
dmu27	Brejinho de Nazaré	253	103446	170	45	107	1363	7293	102	713	117	4428	16818
dmu28	Buriti do Tocantins	158	13957	138	104	64	684	1034	15	480	119	1119	6251
dmu29	Cachoeirinha	88	4099	79	55	48	314	1347	2	283	59	383	2102
dmu30	Campos Lindos	408	155082	318	54	103	13665	31804	186	1492	156	43323	54627
dmu31	Cariri do Tocantins	362	97122	224	231	195	2641	10087	123	1066	269	2582	12427
dmu32	Carmolândia	96	8896	81	23	9	626	5723	22	318	37	375	6935
dmu33	Carrasco Bonito	100	4186	89	30	73	1661	820	13	349	68	608	2420
dmu34	Caseara	385	240364	287	119	66	1726	5536	115	1164	128	1414	6973
dmu35	Centenário	296	69173	249	28	50	193	776	24	726	94	5613	5488
dmu36	Chapada de Areia	128	22517	81	22	37	1198	2181	37	343	50	297	3737
dmu37	Chapada da Natividade	447	72517	410	48	7	99	1450	52	1024	24	2125	10335
dmu38	Colinas do Tocantins	409	63816	287	69	128	4467	13834	67	1275	274	4010	20568
dmu39	Combinado	215	5598	209	145	16	43	562	19	331	188	1254	10651
dmu40	Conceição do Tocantins	247	57193	171	61	48	1142	1692	28	832	96	279	4910
dmu41	Couto Magalhães	619	105252	517	134	145	1540	4658	73	1298	220	1870	8470
dmu42	Cristalândia	312	109930	193	158	120	2341	4713	96	783	171	1159	10329
dmu43	Crixás do Tocantins	105	56824	68	36	54	1635	2402	41	342	20	75	8463
dmu44	Darcinópolis	525	109329	453	93	34	721	3719	77	1243	240	4796	12195
dmu45	Dianópolis	381	151842	257	51	64	736	308760	87	1062	127	18676	26488
dmu46	Divinópolis do Tocantins	592	200452	433	162	79	837	5589	145	1387	288	2011	13404
dmu47	Dois Irmãos do Tocantins	927	232152	668	314	174	4387	6757	138	2797	473	5977	19373
dmu48	Dueré	462	242184	228	175	230	8843	58138	197	1170	286	18560	22738
dmu49	Esperantina	439	23093	395	183	111	699	1013	9	1293	327	2054	5336
dmu50	Fátima	190	32066	160	9	38	307	1083	25	454	84	759	5799
dmu51	Figueirópolis	287	75880	184	128	106	1461	8959	148	639	161	2983	17281
dmu52	Filadélfia	653	96808	479	122	288	4906	3760	40	2019	408	1750	15443
dmu53	Formoso do Araguaia	1039	211912	825	385	499	6630	21868	208	2980	518	18524	89868
dmu54	Fortaleza do Tabocão	69	34191	44	7	10	271	932	24	149	22	1037	7781
dmu55	Goianorte	730	121783	612	22	236	2501	4767	58	1683	438	3534	13705
dmu56	Goiatins	871	308896	561	50	193	6281	4287	84	2903	450	1632	19558
dmu57	Guaraí	674	138686	506	70	124	2360	5470	110	1714	377	10868	26527
dmu58	Gurupi	515	150528	334	184	191	2440	32708	152	1374	383	3273	23349
dmu59	Ipueiras	156	29331	138	10	3	200	1190	33	383	18	1630	5158

	Tv	525	120046	412	124	102	1 4 6 1	1250	20	1075	244	2656	11201
dmu60	Itacajá	535	129946	413	134	103	1461	4259	38	1275	244	3656	11381
dmu61	Itaguatins	471	40741	426	49	96	2193	2077	31	1525	176	681	7354
dmu62	Itapiratins	423	90018	324	22	123	2166	4981	52	1206	198	4795	11298
dmu63	Itaporã do Tocantins	361	100938	269	90	190	4136	8537	53	1361	282	1786	12950
dmu64	Jaú do Tocantins	619	199515	439	55	131	2571	4315	139	1155	225	694	9433
dmu65	Juarina	301	27772	267	46	127	1169	6138	18	765	204	924	5378
dmu66	Lagoa da Confusão	432	143911	324	71	78	11683	10121	90	1142	193	33587	84776
dmu67	Lagoa do Tocantins	225	17845	209	2	4	8	305	1	568	116	59	2485
dmu68	Lajeado	44	9960	33	8	12	204	415	8	92	18	169	1082
dmu69	Lavandeira	198	34618	166	9	95	978	3180	23	613	110	761	3502
dmu70	Lizarda	376	102803	237	55	27	248	148	1	786	40	124	2760
dmu71	Luzinópolis	136	16314	116	66	34	405	2151	15	444	80	6047	3399
dmu72	Marianópolis do Tocantins	654	163372	560	280	231	2846	6403	155	1551	277	1309	13644
dmu73	Mateiros	86	113719	50	55	23	2690	4246	38	272	52	3420	36479
dmu74	Maurilândia do Tocantins	356	22398	318	8	107	969	1744	11	742	253	418	3054
dmu75	Miracema do Tocantins	699	167645	527	104	212	2972	10010	184	1821	417	8009	35676
dmu76	Miranorte	244	58779	184	38	28	500	2412	60	626	120	4252	21320
dmu77	Monte do Carmo	779	238189	515	133	234	2965	9411	143	2052	283	7652	24657
dmu78	Monte Santo do Tocantins	194	54525	126	51	73	3061	3315	55	573	108	1143	6557
dmu79	Palmeiras do Tocantins	534	138500	429	252	170	4818	3362	44	1802	299	4674	6309
dmu80	Muricilândia	312	42942	255	33	46	882	4669	61	748	231	1283	12269
dmu81	Natividade	420	368858	222	98	67	2320	3708	76	1057	185	1282	9099
dmu82	Nazaré	303	16939	276	130	57	557	1125	12	981	154	2143	5251
dmu83	Nova Olinda	836	119028	686	167	336	3059	22102	126	2524	555	9066	20016
dmu84	Nova Rosalândia	231	44913	172	44	63	1370	1656	38	464	104	579	4884
dmu85	Novo Acordo	244	53141	189	26	63	1988	18294	29	622	125	1700	3300
dmu86	Novo Alegre	119	19855	101	16	27	154	249	9	270	38	348	2942
dmu87	Novo Jardim	106	61720	56	30	50	1020	1378	34	326	55	682	3236
dmu88	Oliveira de Fátima	81	18755	59	18	37	985	1567	36	205	58	718	2934
dmu89	Palmeirante	641	176201	491	170	176	4073	12669	88	1613	342	4491	11252
dmu90	Palmeirópolis	479	135399	346	37	187	5391	9921	118	1488	310	7745	12369
dmu91	Paraíso do Tocantins	434	105809	276	85	146	3421	7254	112	1230	311	4041	16319

dmu92	Paranã	1257	629886	924	77	184	1765	5060	104	3154	550	2185	17510
dmu93	Pau D'Arco	519	120459	365	286	227	3030	12578	78	1277	377	2451	10993
dmu94	Pedro Afonso	278	91836	193	76	78	854	13032	125	604	143	10813	47718
dmu95	Peixe	635	291924	381	105	163	3998	10429	280	1714	360	5505	33825
dmu96	Pequizeiro	591	66316	522	132	218	2563	5754	39	1510	502	3222	12917
dmu97	Colméia	705	64576	600	27	219	4105	5606	24	1878	442	2578	13780
dmu98	Pindorama do Tocantins	392	103847	278	7	126	981	2459	44	1241	210	808	7645
dmu99	Piraquê	489	130222	427	145	178	5230	9547	116	1272	340	1281	12424
dmu100	Pium	453	582382	228	270	237	25439	34520	291	1823	280	31937	35442
dmu101	Ponte Alta do Bom Jesus	551	40865	487	91	115	2709	1835	26	1389	214	666	4972
dmu102	Ponte Alta do Tocantins	667	239825	479	21	197	1391	3180	58	1830	339	1404	14322
dmu103	Porto Alegre do Tocantins	205	32257	151	66	72	431	2667	34	733	131	522	3463
dmu104	Porto Nacional	1242	129590	882	177	218	4726	10360	242	2984	577	10361	60366
dmu105	Praia Norte	154	16590	113	27	81	618	688	5	746	119	792	2708
dmu106	Presidente Kennedy	176	47850	119	19	65	2154	4774	52	609	105	1437	13096
dmu107	Pugmil	141	26424	112	49	45	622	1481	30	308	68	580	4418
dmu108	Recursolândia	376	34043	315	6	31	467	1019	10	1019	107	434	4743
dmu109	Riachinho	419	52051	336	233	196	1418	3289	34	1649	310	1124	6371
dmu110	Rio da Conceição	33	4418	29	1	8	40	92	2	85	19	82	2600
dmu111	Rio dos Bois	161	41746	138	83	30	2117	2638	41	423	83	6343	5570
dmu112	Rio Sono	860	236904	626	152	388	3965	3236	67	2386	411	1855	7720
dmu113	Sampaio	115	5502	98	44	21	147	321	6	395	92	561	1781
dmu114	Sandolândia	557	117761	426	128	242	4351	8981	144	1549	305	621	17819
dmu115	Santa Fé do Araguaia	243	108585	182	33	28	642	5142	50	652	95	835	24184
dmu116	Santa Maria do Tocantins	265	106958	173	70	130	4609	1754	44	735	116	1292	8842
dmu117	Santa Rita do Tocantins	311	191852	189	186	55	3384	14854	179	748	66	685	16519
dmu118	Santa Rosa do Tocantins	459	112204	388	174	99	2166	7322	109	1034	222	5660	12401
dmu119	Santa Tereza do Tocantins	184	33651	141	43	110	798	2507	12	522	136	580	3513
dmu120	Santa Terezinha do Tocantins	177	20599	144	23	74	654	1163	13	660	140	731	3510
dmu121	São Bento do Tocantins	385	106734	327	129	222	4206	8278	66	1276	203	1454	4012

dmu122	São Félix do Tocantins	157	20078	133	1	31	113	377	1	324	81	241	1013
dmu123	São Miguel do Tocantins	200	9384	167	38	100	817	2442	20	863	142	778	4219
dmu124	São Salvador do Tocantins	291	71028	220	13	177	2172	1855	49	929	158	794	4523
dmu125	São Sebastião do Tocantins	291	21265	186	175	127	630	2022	9	865	167	483	1945
dmu126	São Valério	430	109019	323	239	95	2300	4158	88	1029	253	1687	13435
dmu127	Silvanópolis	382	93135	258	61	81	1108	91676	95	1192	265	12055	14515
dmu128	Sítio Novo do Tocantins	320	23785	270	84	141	1857	2298	15	1034	244	1295	5352
dmu129	Sucupira	180	86716	114	58	52	1549	6679	101	475	89	1391	10862
dmu130	Taguatinga	1023	148057	791	198	174	5778	6412	85	2643	433	1735	17895
dmu131	Taipas do Tocantins	66	30694	41	7	4	3	151	7	211	58	263	2887
dmu132	Talismã	341	385437	57	116	106	21604	8508	215	945	125	2893	14979
dmu133	Palmas	962	38588	729	425	202	5707	7986	86	2605	494	7904	17950
dmu134	Tocantínia	274	47738	143	116	78	426	1592	25	1550	179	1052	2734
dmu135	Tocantinópolis	460	30571	392	21	49	1748	1499	17	1117	165	5035	6540
dmu136	Tupirama	151	35009	116	5	27	374	4776	73	240	98	5785	11104
dmu137	Tupiratins	365	53892	333	1	14	1249	2128	22	980	85	2080	5507
dmu138	Wanderlândia	676	103966	524	246	251	3108	5686	81	1905	426	5168	17137
dmu139	Xambioá	415	100080	332	192	115	4248	10356	79	1308	233	3058	24033

Fonte: IBGE - Censo Agropecuário; IPEA.

¹ Orientação técnica governamental, cooperativas, empresas, ONG's, Proprietário.

² Pessoal ocupado em estabelecimento agropecuário em 31/12 com 14 anos e mais de idade.

³ PIB Municipal - agropecuária - valor adicionado - preços básicos. Comentário: Fontes: Para 2002-2005: Sistema de Contas Regionais Referência 2002. Para 1999-2001: Antigo Sistema de Contas Regionais. Conceito utilizado a partir de 1999 a preços básicos. Para os anos censitários de 1970 a 1996, elaboração do IPEA pelo rateio do PIB agropecuária a custo de fatores, em nível estadual do IBGE pela estimativa do valor adicionado na agropecuária dos municípios do estado, calculado pela soma do valor da produção e outras receitas menos as despesas de consumo intermediário com base nos Censos dos respectivos anos. Fórmula de cálculo: VA Agro = VP + OREC - CI; onde VA Agro = Valor Adicionado da Agropecuária; VP = Valor da Produção; OREC = Outras Receitas do Estabelecimento; CI = Consumo Intermediário. Para metodologia ver: Metodologia PIB Municipal 1970 a 1996 Para dados anteriores a 1999 as estimativas do PIB das atividades em nível municipal não são consistentes com aquelas em nível estadual e nacional. O problema se deve à utilização de metodologias distintas. Atualizado em: 10/02/2012. Deflator: Deflator Implícito do PIB nacional.

ANEXO F - Características dos estabelecimentos da agropecuária nos municípios do Estado do Tocantins – 1995/1996

		INPUT1	INPUT2	INPUT3	INPUT4	INPUT5	INPUT6	INPUT7	INPUT8	INPUT9	OUTPUT1	OUTPUT2	OUTPUT3
DMU's	MUNICÍPIOS	NÚMERO DE ESTABEL. AGROPEC. (UNIDADES)	ÁREA DOS ESTABEL. AGROPEC. (HECTARES)	NÚMERO DE ESTABEL, DA AGRICULTUR A FAMILIAR	NÚMERO DE ESTABEL. COM ORIENTAÇÃO TÉCNICA ¹	NÚMERO DE ESTABEL. AGROPEC. QUE INVESTIRAM (UNIDADES)	VALOR DOS INVESTIMENTOS (MIL REAIS)	VALOR DAS DESPESAS (MIL REAIS)	NÚMERO DE TRATORES NOS ESTABEL. AGROPEC. (UNIDADES)	PESSOAL OCUPADO ²	NÚMERO DE ESTABEL. AGROPEC. QUE OBTIVERAM RECEITAS NO ANO (UNIDADES)	VALOR DAS RECEITAS OBTIDAS PELOS ESTABEL. NO ANO (MIL REAIS)	PIB AGROPECUÁRIO (Mil reais) ³
Dmu1	Abreulândia	205	129704	28	8	158	917	822	67	946	204	1 142	4426
dmu2	Aliança do Tocantins	353	225132	70	307	151	1 387	1 796	148	1 369	330	2 177	7834
dmu3	Almas	322	134104	154	51	128	256	1 029	48	1 826	296	1 004	3571
dmu4	Alvorada	327	210067	73	100	122	1 243	3 834	268	1 578	319	5 110	14902
dmu5	Ananás	250	120172	136	62	95	4 537	2 705	37	1 584	246	6 534	24052
dmu6	Angico	169	38870	124	7	55	57	171	8	675	168	561	2540
dmu7	Aparecida do Rio Negro	300	114557	138	18	168	476	745	41	904	288	1 457	6221
dmu8	Aragominas	139	96824	70	23	69	1 227	1 735	48	958	132	3 615	11213
dmu9	Araguacema	177	218537	66	30	82	463	1 786	141	755	177	3 654	11578
dmu10	Araguaçu	721	474901	226	171	284	3 019	5 200	354	3 284	703	8 765	28224
dmu11	Araguaína	656	419337	372	89	332	4 972	4 668	155	3 214	629	12 258	47821
dmu12	Araguanã	49	87877	8	32	28	1 820	1 378	41	279	48	5 411	20047
dmu13	Araguatins	855	146115	575	50	466	2 336	3 231	58	4 548	847	5 499	23132
dmu14	Arapoema	520	269348	175	73	305	7 110	5 582	146	2 270	497	14 415	46677
dmu15	Arraias	687	378001	248	52	232	1 236	4 864	96	3 237	638	4 589	15031
dmu16	Augustinópolis	713	43049	311	11	236	530	756	17	1 740	703	2 006	8411
dmu17	Aurora do Tocantins	331	85882	209	26	217	734	1 159	66	3 134	324	1 995	9139
dmu18	Axixá do Tocantins	548	28585	362	5	142	911	434	13	1 794	548	1 471	7416
dmu19	Babaçulândia	1081	117529	801	21	333	293	1 058	26	3 919	1 080	2 085	13560
dmu20	Barrolândia	312	86486	121	38	105	411	758	47	1 002	305	1 626	6680

dmu21	Bernardo Sayão	465	111670	349	39	273	2 260	2 154	47	2 520	459	4 976	18422
dmu22	Bom Jesus do Tocantins	205	106945	53	41	111	229	428	35	1 050	205	1 013	5940
dmu23	Brasilândia do Tocantins	108	52250	46	5	58	253	559	26	587	108	893	2627
dmu24	Brejinho de Nazaré	304	226466	53	35	66	535	3 040	195	2 053	291	4 143	10766
dmu25	Buriti do Tocantins	125	19382	38	3	21	93	608	9	389	109	578	1224
dmu26	Cachoeirinha	70	8606	48	4	57	112	174	6	1 333	70	238	1200
dmu27	Campos Lindos	473	91536	163	7	165	116	331	10	2 490	471	607	4916
dmu28	Cariri do Tocantins	200	98533	58	31	86	1 515	1 410	90	689	195	2 484	8350
dmu29	Carmolândia	28	29995	6	10	6	45	1 191	25	247	24	1 011	1778
dmu30	Carrasco Bonito	220	16588	72	49	46	144	233	9	1 024	220	445	1594
dmu31	Caseara	218	169844	139	115	165	1 658	3 587	120	1 192	204	3 032	4395
dmu32	Centenário	227	73149	56	2	154	174	153	3	943	227	333	3108
dmu33	Colinas do Tocantins	403	79508	218	83	227	3 186	2 447	54	1 837	373	5 079	16794
dmu34	Combinado	285	14061	261	152	247	1 429	835	12	1 707	279	2 691	10213
dmu35	Conceição do Tocantins	364	246157	94	10	98	938	923	33	970	315	1 949	2154
dmu36	Couto Magalhães	316	113532	162	7	216	634	874	42	1 685	312	596	8032
dmu37	Cristalândia	392	306170	66	158	184	1 147	3 296	173	1 560	382	1 767	16726
dmu38	Darcinópolis	345	69127	248	9	151	1 306	610	23	1 361	340	4 769	4269
dmu39	Dianópolis	309	154409	151	108	151	83	991	56	1 826	292	738	10971
dmu40	Divinópolis do Tocantins	416	219102	108	41	129	1 079	2 445	157	1 566	383	2 215	7586
dmu41	Dois Irmãos do Tocantins	944	323019	337	84	662	1 502	2 299	81	1 536	938	2 676	22577
dmu42	Dueré	438	284961	106	212	250	2 613	4 511	224	4 383	429	4 675	32894
dmu43	Esperantina	110	4567	106	2	35	2 089	16	1	1 850	110	6 311	1295
dmu44	Fátima	223	50893	82	10	110	10	718	32	551	199	146	4620

dmu45	Figueirópolis	323	181655	47	62	64	394	2 467	176	936	309	926	17196
dmu46	Filadélfia	724	149123	373	49	169	1 036	952	15	1 499	723	5 104	11413
dmu47	Formoso do Araguaia	980	570994	338	74	435	418	30 353	412	3 306	951	1 908	180672
dmu48	Fortaleza do Tabocão	131	53932	49	8	73	3 381	843	35	5 261	129	43 110	6124
dmu49	Goianorte	471	139581	178	22	330	1 055	1 084	51	666	463	1 719	11273
dmu50	Goiatins	989	349935	342	201	468	1 337	799	19	1 669	987	2 087	11638
dmu51	Guaraí	719	185530	345	21	364	434	1 826	79	4 694	674	1 254	12174
dmu52	Gurupi	446	146461	154	104	193	2 449	3 134	210	2 716	424	2 963	22538
dmu53	Itacajá	440	123761	134	6	141	2 103	628	12	1 884	438	6 061	5115
dmu54	Itaguatins	627	54727	516	14	237	164	494	18	1 010	623	927	7943
dmu55	Itapiratins	301	81258	89	1	92	609	270	7	2 113	299	1 337	3528
dmu56	Itaporã do Tocantins	245	100483	114	13	187	160	1 456	32	1 271	245	537	13371
dmu57	Jaú do Tocantins	450	169816	147	15	159	1 415	1 289	123	1 054	435	3 704	5867
dmu58	Juarina	214	23191	164	3	155	519	200	9	1 752	214	1 718	4657
dmu59	Lagoa da Confusão	253	422881	46	57	108	381	3 507	98	976	253	911	19433
dmu60	Lagoa do Tocantins	169	36529	88	3	121	1 214	147	1	1 170	166	5 944	2412
dmu61	Lajeado	54	16095	16	15	45	78	145	11	1 097	54	278	983
dmu62	Lizarda	453	186113	148	3	62	122	143	5	232	434	180	3642
dmu63	Marianópolis do Tocantins	203	201849	44	80	185	63	2 956	163	805	199	243	9276
dmu64	Mateiros	107	28853	51	1	34	3 646	12	2	943	107	3 543	1119
dmu65	Maurilândia do Tocantins	211	26567	125	3	36	14	240	2	619	208	90	1881
dmu66	Miracema do Tocantins	455	178429	133	160	190	120	2 717	152	652	448	415	13899
dmu67	Miranorte	283	85756	116	36	111	1 335	1 154	55	1 465	281	3 942	9205
dmu68	Monte do Carmo	488	259413	126	128	163	867	1 849	97	1 305	482	2 277	10528

				1	1			1					
dmu69	Palmeiras do Tocantins	185	52358	107	17	43	1 426	488	30	2 793	180	2 558	4645
dmu70	Muricilândia	158	94995	83	39	95	155	1 746	49	880	144	1 118	12073
dmu71	Natividade	676	305731	206	100	206	1 764	1 529	68	1 024	634	3 807	10708
dmu72	Nazaré	568	50152	375	10	214	943	566	7	3 529	561	1 731	6875
dmu73	Nova Olinda	362	90145	167	14	118	383	1 167	43	2 630	362	1 164	7780
dmu74	Nova Rosalândia	109	44643	34	12	64	882	392	43	1 168	104	2 231	2509
dmu75	Novo Acordo	135	86506	48	4	41	365	97	11	496	125	523	1089
dmu76	Novo Alegre	77	15745	48	3	30	100	279	11	343	70	139	2620
dmu77	Novo Jardim	52	28238	19	10	11	201	298	14	485	41	622	330
dmu78	Palmeirante	462	183761	135	16	146	165	556	39	262	434	209	5271
dmu79	Palmeirópolis	489	148361	186	9	239	1 426	1 537	107	1 903	475	2 011	10016
dmu80	Paraíso do Tocantins	473	159926	151	132	136	118	2 585	152	2 327	472	700	14243
dmu81	Paranã	861	574298	295	230	272	1 098	1 369	79	1 709	770	2 584	5793
dmu82	Pau D'Arco	380	115152	293	102	300	781	946	39	1 644	379	4 574	14815
dmu83	Pedro Afonso	296	91047	156	77	101	1 236	1 215	71	3 808	293	1 802	12848
dmu84	Peixe	891	469849	283	77	126	3 059	2 361	400	1 275	847	3 634	24308
dmu85	Pequizeiro	261	91366	162	16	178	569	1 478	57	1 340	252	2 480	14846
dmu86	Colméia	450	91762	225	25	275	1 330	1 300	27	3 675	439	5 613	10358
dmu87	Pindorama do Tocantins	395	95821	171	7	130	2 293	624	10	1 122	376	3 931	5612
dmu88	Piraquê	57	95621	11	54	24	233	1 295	47	1 461	57	765	10997
dmu89	Pium	549	497308	84	204	248	1 418	3 841	236	292	537	3 110	21809
dmu90	Ponte Alta do Bom Jesus	432	86825	280	23	267	1 508	447	16	2 994	424	5 329	4936
dmu91	Ponte Alta do Tocantins	555	277921	159	6	222	512	869	34	1 871	544	842	12107
dmu92	Porto Alegre do Tocantins	91	23115	41	6	70	449	201	17	3 276	90	1 224	2104

dmu93	Porto Nacional	694	287477	290	137	166	196	2 370	211	457	692	358	22565
dmu94	Praia Norte	475	11473	222	3	40	798	115	1	3 450	475	5 087	2719
dmu95	Presidente Kennedy	161	72576	63	2	64	23	742	24	946	161	314	4147
dmu96	Recursolândia	324	89517	107	3	132	238	65	4	386	324	1 191	6284
dmu97	Riachinho	305	45134	270	13	97	61	770	18	1 275	305	274	11694
dmu98	Rio da Conceição	64	21921	50	2	7	1 130	26	1	1 346	56	2 613	571
dmu99	Rio dos Bois	74	48878	24	10	39	45	752	27	285	73	35	3843
dmu100	Rio Sono	773	260840	252	50	294	282	391	28	588	770	1 103	7126
dmu101	Sampaio	124	7888	48	3	33	275	182	6	2 653	123	928	1111
dmu102	Sandolândia	469	363033	205	80	197	235	3 569	152	391	465	225	12829
dmu103	Santa Fé do Araguaia	60	104622	11	16	23	1 235	1 681	45	2 034	59	4 386	5552
dmu104	Santa Maria do Tocantins	178	68768	56	11	97	814	197	11	365	178	3 489	2670
dmu105	Santa Rosa do Tocantins	265	123491	91	68	119	161	802	65	856	255	340	2785
dmu106	Santa Tereza do Tocantins	149	36994	58	16	78	471	345	4	1 810	146	540	5843
dmu107	São Bento do Tocantins	206	30334	151	2	73	530	253	6	745	186	1 091	2280
dmu108	São Félix do Tocantins	69	25387	16	1	39	190	41	1	721	69	450	1372
dmu109	São Miguel do Tocantins	826	27749	384	2	81	51	375	11	523	826	139	6614
dmu110	São Salvador do Tocantins	152	91999	32	3	44	216	373	31	2 023	129	1 318	1873
dmu111	São Sebastião do Tocantins	127	13229	109	2	68	176	94	4	524	127	383	1500
dmu112	São Valério	573	200350	258	12	139	50	1 017	78	431	536	292	8270
dmu113	Silvanópolis	400	101347	200	83	204	391	950	47	2 102	395	1 525	4285
dmu114	Sítio Novo do Tocantins	1135	29780	575	39	155	589	684	12	2 168	1 135	1 115	10065
dmu115	Sucupira	171	83500	51	48	59	1 303	1 133	99	2 864	157	1 953	5954
dmu116	Taguatinga	655	171638	370	159	351	544	2 107	84	612	608	2 165	13407

1 115	m: 1 m ::	106	61345	44	Q	21	1 426	119	14	2 781	106	2 799	1635
dmu11/	Taipas do Tocantins	100	01343	44	O	21	1 420	119	14	2 / 01	100	2 199	1033
dmu118	Palmas	607	115246	458	73	182	96	1 724	85	315	594	398	10208
dmu119	Tocantínia	149	48896	69	84	58	215	283	41	652	148	492	2226
dmu120	Tocantinópolis	289	54858	148	37	127	529	930	37	1 093	280	1 769	8072
dmu121	Tupiratins	95	71569	37	5	32	146	248	15	432	92	272	1036
dmu122	Wanderlândia	467	122340	288	90	162	539	2 233	52	2 596	466	5 112	22433
dmu123	Xambioá	168	134410	71	35	55	910	1 880	63	1 030	167	5 041	18582

Fonte: IBGE - Censo Agropecuário; IPEA.

¹ Orientação técnica governamental, cooperativas, empresas, ONG's, Proprietário.

² Pessoal ocupado em estabelecimento agropecuário em 31/12 com 14 anos e mais de idade.

³ PIB Municipal - agropecuária - valor adicionado - preços básicos. Comentário: Fontes: Para 2002-2005: Sistema de Contas Regionais Referência 2002. Para 1999-2001: Antigo Sistema de Contas Regionais. Conceito utilizado a partir de 1999 a preços básicos. Para os anos censitários de 1970 a 1996, elaboração do IPEA pelo rateio do PIB agropecuária a custo de fatores, em nível estadual do IBGE pela estimativa do valor adicionado na agropecuária dos municípios do estado, calculado pela soma do valor da produção e outras receitas menos as despesas de consumo intermediário com base nos Censos dos respectivos anos. Fórmula de cálculo: VA Agro = VP + OREC - CI; onde VA Agro = Valor Adicionado da Agropecuária; VP = Valor da Produção; OREC = Outras Receitas do Estabelecimento; CI = Consumo Intermediário. Para metodologia ver: Metodologia PIB Municipal 1970 a 1996 Para dados anteriores a 1999 as estimativas do PIB das atividades em nível municipal não são consistentes com aquelas em nível estadual e nacional. O problema se deve à utilização de metodologias distintas. Atualizado em:10/02/2012. Deflator: Deflator Implícito do PIB nacional.